Magnetic catalysts

Sašo Gyergyek

Department for Materials Synthesis, “Jožef Stefan” Institute, Ljubljana, Slovenia
Magnetic catalysts
Magnetic catalysts

Why magnetic?

1. Separation
 Ease recycling of valuable noble metals

1. Magnetic heating

Localization of the heat where needed, a technology suited to push many catalytic reactions beyond the reactor heat transfer limits, to the limits of the process kinetics. Advantages: more favourable energy balance, process intensification, reactor setup, simplification, reduced safety issues, minor operational costs, increased process productivity and decentralisation.¹

¹W. Wang et.al. ACS Catalysis 2019, 9, 7921.
Magnetic catalysts

- Facile and scalable method for preparation of Ru based catalyst,
- Nanocomposite: magnetic nanoparticles dispersed within C material, decorated with Ru nanoparticles

Magnetic catalysts

Magnetic catalysts

Hydrotreatment of eugenol

- Hydrogenation is nearly 5-times more favoured than the deoxygenation,
- Removal of the methoxy group from the HMPB is 28-times faster than that of the hydroxyl group from the HPB,
- Deoxygenation of saturated rings is an order of magnitude faster than that of the unsaturated products.

Magnetic catalysts

Magnetic heating

Conventional heating
Magnetic catalysts

- Active, selective and stable hydrogenation magnetic catalyst can be prepared by simple, scalable green methods,
- Magnetic heating shows advantages in faster heat-up and higher “effective” temperature leading to faster kinetics

Thank you for your attention

National institute of Chemistry:
- Blaž Likozar
- Miha Grilc
- Ana Bjelić
- Brigita Hočevar

Jožef Stefan Institute:
- Darko Makovec
- Andraž Kocjan
- Marijan Nečemer

Faculty of electrical engineering and computer sciences, University of Maribor:
- Miloš Beković

Slovenian Research Agency:
- P2–0089
- P2-0087
- P2–0152

Center of excellence in Nanoscience and Nanotechnology