Quality control in crowdsourcing
A Survey of Quality Attributes, Assessment Techniques, and Assurance Actions

Florian Daniel
florian.daniel@polimi.it
My **goal** today = mini intro to quality control in crowdsourcing

Quality of a crowdsourced task = the extent to which the output meets or exceeds the requester’s expectations

Types of quality in crowdsourcing

- **People quality**
 - Requester publishes tasks
 - Crowd performs tasks

- **Process quality**
 - Requester assesses and uses output

- **Data/product quality**
 - Output

- **Software quality**
 - Crowd

- **Types**
 - Data/product quality
 - Software quality
 - Process quality
 - People quality
High-level **taxonomy**

- Quality in Crowdsourcing
 - Quality Model
 - Quality Assessment
 - Quality Assurance

Methodology

- Bottom-up construction of models
- Literature selection: 257 papers analyzed
- Analysis of state of the art: 14 platforms positioned inside taxonomy
Assessment model

- Quality Assessment
 - Individual
 - Group
 - Computation-based

 - General techniques
 - Rating
 - Qualification test
 - Self-assessment
 - Expert review
 - Usability check

 - Specific methods
 - Voting
 - Group consensus
 - Output agreement
 - Peer review
 - Feedback aggreg.
 - User study
 - Ground truth
 - Outlier analysis
 - Fingerprinting
 - Achievements
 - Implicit feedback
 - Association analysis
 - Exec. log analysis
 - Content analysis
 - Transfer learning
 - Collusion detection
Quality assurance

1. Improve data quality
 - Cleanse data
 - Aggregate outputs
 - Filter outputs
 - Iterative improvement
 - Filter workers
 - Reject workers
 - Assign workers
 - Recommend tasks
 - Promote tasks
 - Situated crowds
 - Recruit teams

2. Select people
 - Incentivize people
 - Improve extrinsic motivation
 - Promote workers
 - Pay bonus
 - Share purpose
 - Self-monitoring
 - Social transparency
 - Gamify task

3. Train people
 - Prime workers
 - Teach workers
 - Provide feedback
 - Teamwork
 - Improve intrinsic motivation
 - Lower complexity
 - Decompose task
 - Separate duties
 - Valid. worker inputs
 - Improve usability
 - Prompt for rationale
 - Introduce breaks
 - Embrace error

4. Control execution
 - Improve task design
 - Reserve workers
 - Flood task list
 - Dyn. instant. tasks
 - Control task order
 - Inter-task coord.

Assurance model

Strategies

Specific actions
State of the art (as of end of 2017)

Turkit (Little et al. 2010c)

Jabberwocky (Ahmad et al. 2011)

AskSheet (Quinn and Bederson 2014)

CrowdWeaver (Kittur et al. 2012)

Turkomatic (Kulkarni et al. 2012a)

CrowdForge (Kittur et al. 2011)

AskSheet (Quinn and Bederson 2014)
Lionel:

“…cross-match the answers of students to questions we don't have the answer for”

“directly or indirectly ask boolean questions to the students (e.g. ‘Does the student think that this word is a verb?', ‘Does the student think that this translation is ok?’ etc.)”

“…focus on aggregation methods for answers to boolean questions”
Binary/Boolean labeling: worker types

An Evaluation of Aggregation Techniques in Crowdsourcing

Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Lam Ngoc Tran, and Karl Aberer

École Polytechnique Fédérale de Lausanne
{quocviethung.nguyen,tam.nguyenthanh,ngoc.lam,karl.aberer}@epfl.ch

Abstract. As the volumes of AI problems involving human knowledge are likely to soar, crowdsourcing has become essential in a wide range of world-wide-web applications. One of the biggest challenges of crowdsourcing is aggregating the answers collected from the crowd since the workers might have wide-ranging levels of expertise. In order to tackle this challenge, many aggregation techniques have been proposed. These techniques, however, have never been compared and analyzed under the same setting, rendering a ‘right’ choice for a particular application very difficult. Addressing this problem, this paper presents a benchmark that offers a comprehensive empirical study on the performance comparison of the aggregation techniques. Specifically, we integrated several state-of-the-art methods in a comparable manner, and measured various performance metrics with our benchmark, including computation time, accuracy, robustness to spammers, and adaptivity to multi-labeling. We then provide in-depth analysis of benchmarking results, obtained by simulating the crowdsourcing process with different types of workers. We believe that the findings from the benchmark will be able to serve as a practical guideline for crowdsourcing applications.

Comparison of non-iterative and iterative aggregation techniques

>> “For binary labeling, Expectation Maximization is the winner”
ABSTRACT
In this paper we analyze a crowdsourcing system consisting of a set of users and a set of binary choice questions. Each user has an unknown, fixed, reliability that determines the user’s error rate in answering questions. The problem is to determine the truth values of the questions solely based on the user answers. Although this problem has been studied extensively, theoretical error bounds have been shown only for restricted settings: when the graph between users and questions is either random or complete. In this paper we consider a general setting of the problem where the user–question graph can be arbitrary. We obtain bounds on the error rate of our algorithm and show it is governed by the expansion of the graph. We demonstrate, using several synthetic and real datasets, that our algorithm outperforms the state of the art.
Adaptive Task Assignment for Crowdsourced Classification

Chien-Ju Ho, Shahin Jabbari
University of California, Los Angeles

Jennifer Wortman Vaughan
Microsoft Research, New York City and University of California, Los Angeles

Abstract

Crowdsourcing markets have gained popularity as a tool for inexpensively collecting data from diverse populations of workers. Classification tasks, in which workers provide labels (such as “offensive” or “not offensive”) for instances (such as “websites”), are among the most common tasks posted, but due to human error and the prevalence of spam, the labels collected are often noisy. This problem is typically addressed by collecting labels for each instance from multiple workers and combining them in a clever way, but the question of how to choose which tasks to assign to each worker is often overlooked. We investigate the problem of task assignment and label inference for heterogeneous classification tasks. By applying online primal-dual techniques, we derive a provably near-optimal adaptive assignment algorithm. We show that adaptively assigning workers to tasks can lead to more accurate predictions at a lower cost when the available workers are diverse.
ABSTRACT
In this paper we address the problem of budget allocation for redundantly crowdsourcing a set of classification tasks where a key challenge is to find a trade–off between the total cost and the accuracy of estimation. We propose CrowdBudget, an agent–based budget allocation algorithm, that efficiently divides a given budget among different tasks in order to achieve low estimation error. In particular, we prove that CrowdBudget can achieve at most $\max\left\{0, \frac{K}{2} - O(\sqrt{B})\right\}$ estimation error with high probability, where K is the number of tasks and B is the budget size. This result significantly outperforms the current best theoretical guarantee from Karger et al. In addition, we demonstrate that our algorithm outperforms existing methods by up to 40% in experiments based on real–world data from a prominent database of crowdsourced classification responses.

Majority voting based optimization without the need for direct task assignment
My impression

The problem is **not just aggregating** outputs!

Quality is a holistic problem that is determined by **all aspects** of a crowdsourced task

- Quality of input data
- Quality of task design
- Quality of people
- Quality of output processing

Each crowdsourced task is an own **experiment** and has own quality control requirements

>> iterative development of tasks
“Does the student think that this **translation is ok**?”

vs.

- **Translate sentence**
- **Vote on translation**
- **Improve translation**
- **Accept result**

Collaborative workflow with iteration
“Does the student think that this **word is a verb**?”

Is the following word a verb?
“**is**” [**yes**|**no**]

vs.

Gamification

Where is the verb in this sentence?

Assign **1 point** if the verb is correctly identified.
Use common **MV** to decide on correctness of verb.
Assign **3 more points** to the player who identified it first.
Publish **top scorers / a leaderboard** (fosters competition).
Award **badges** for achieved milestones.
Mixed collaboration and gamification

Collaborative workflow with iteration

Translate sentence -> Vote on translation

Improve translation

Accept result

ok

ko

Give n points for a translation that obtains n positive votes.
Give 1 point to votes that are the majority vote, 0 otherwise.
Publish ranking.
In short, use **all registers** you have to assure quality!

And keep measuring and checking...