Large-Scale Sequence Labelling

Antoine Bordes∗†, Léon Bottou†
Ronan Collobert†, and Jason Weston†

∗ LIP6, Université de Paris 6, Paris.
† NEC Laboratories America, Princeton.

NIPS Workshop on Efficient Machine Learning
December 8, 2007
Motivation

• Why working on large-scale learning if not for solving more complex problems?

• Recent works on SVM-like systems for structured learning tasks with kernels.
 - SVM-like = large margins + kernels
 - Sequence labelling = simplest structured learning task.

• There are very fast algorithms for SVM-like systems.
 - LaSVM: 8M examples on a single CPU (Loosli et al., 2006.)
 - LaRank: extension to multiclass problems and beyond (Bordes et al., 2007.)

• Could we mix?
Outline

I. Sequence Labelling

II. LaSVM & Co

III. Structure and Inference

IV. Kernels
Part I

Sequence Labelling
Task

Goal: Given an input sequence \((x_i)\) of tokens, produce an output sequence \((y_i)\) of discrete labels.

Common applications:
- Speech recognition
- Language processing (tagging, chunking, etc.),
- Optical character recognition (OCR),
- Scene analysis (see workshop “grammar of vision”),
- etc.

Traditional methods:
- Probabilistic models (HMMs, CRFs).
- Rare works with non probabilistic losses
 (Driancourt et al., 91; Katagiri et al., 92; LeCun et al., 98)
Sequence Labelling With Kernels

Structured Outputs with Kernels:
Recent works combine two ideas:

(Taskar et al., 2003; Altun et al., 2003)

- Using **joint kernels** to represent the global model.
- Using **margin losses** to train it.

Speed issues:
These methods are not considered to be very fast.
Virtually no experiments with real-size datasets.
Joint Kernels

A pattern-class pair \((x, y)\) is either correct or incorrect. This is treated as a two-class SVM without bias using a joint kernel function: \(K(x, y, \bar{x}, \bar{y}) = \langle \Phi(x, y), \Phi(\bar{x}, \bar{y}) \rangle\)

Primal formulation:

\[
\min_w \quad \frac{1}{2} \langle w, w \rangle + C \sum_{i=1}^{n} \xi_i \quad \text{subject to} \quad \left\{ \begin{array}{l}
\forall i \quad \xi_i \geq 0 \\
\forall i \quad \forall y \neq y_i \quad \langle w, \Phi(x_i, y_i) - \Phi(x_i, y) \rangle \geq \delta - \xi_i
\end{array} \right.
\]

Dual formulation:

\[
\max_{\beta} \quad \sum_i \beta_i^y - \frac{1}{2} \sum_{i,j,y,\bar{y}} \beta_i^y \beta_j^\bar{y} K(x_i, y, x_j, \bar{y}) \quad \text{subject to} \quad \left\{ \begin{array}{l}
\forall i \quad \forall y \quad \beta_i^y \leq C \delta(y, y_i) \\
\forall i \quad \sum_y \beta_i^y = 0
\end{array} \right.
\]

Support Patterns and Support Vectors:

- **Support Vector**: any pair \((x_i, y) \) with \(\beta_i^y \neq 0 \).
- **Support Pattern**: any \(x_i \) with a nonzero \(\beta_i^y \).
Benchmarks

Common datasets in recent literature:
– Optical Character Recognition (Taskar et al. 2003).
– Part-Of-Speech Tagging (CoNLL 2002).
– Text Chunking (CoNLL 2000).

⇒ Fully supervised tasks: labels are provided for every time index.
≠ Weakly supervised tasks: one only knows constraints on labels.

Simpler problems → simpler approaches.

First Question
Can these simpler approaches speed-up training?
Part II

LaSVM & Co
Main Properties

1. **Coordinate ascent** in dual space:
 - One coordinate at a time.
 - Two coordinates at a time when equality constraints force it.

2. Balance **coordinate choices** that:
 - *reprocess* already seen examples that became SVs or SPs.
 - *process* fresh examples.

3. **Equivalent view**:
 - Computational cost vs statistical gain (*manage time*)
 - Insertion vs deletion of SVs/SPs. (*manage memory*)

4. **Convergence**:
 - Exhaustive convergence analysis.
 - Number of iterations grows linearly with number of examples.
Performance Highlights

- LaSVM/LaRank achieves the SVM test performance after a single pass on the training set (Bordes et al., 2005, 2007).

- Speed gains are usually derived from a more conservative use of kernel cache memory.

- LaSVM has been used to train SVMs with 8M examples on a single CPU (Loosli et al., 2006). Training requires 20h and 6GB. This compares with a parallel SMO algorithm using 64 processors and 64GB (Durdanovic et al., 2006).

⇒ Family of efficient SVM solvers with interesting online behavior.

Second question:
Can this family speed-up training of structured output models?
Part III

Structure and Inference
Inference

- Use **LaRank** on benchmark tasks.

- Different **modelling assumptions**
 - → different inference algorithms
 - → different costs.

- Modelling assumptions:
 - Conditional independence
 - Label y_t function of $(x_{t+i}), i \in \mathcal{I}$ and $(y_{t+j}), j \in \mathcal{J}$.
 - Invariance
 - This function does not depend on t.
Multiclass Classification over Tokens

- $\mathcal{I} = \emptyset$.
- $\mathcal{I} = \{0\}$.
- $K(x, y, \bar{x}, \bar{y}) = \delta_{yy} k(x, \bar{x})$

- Prediction of successive labels y_t given their related token x_t.
- Input and output structures are not used.
- A basic multiclass classifier that can be easily refined.
• Greedy prediction of successive labels y_t using an extended input time frame (x_{t+i}), $i \in \mathcal{I}$.

• Each time frame is an independent example.

• Output dependency is expressed via the overlapping inputs.

• It might be necessary to use a large input context \mathcal{I}: costly.
Greedy Inference using Output Context

- $\mathcal{J} = [-n; 0[; n > 0$.
- $\mathcal{I} = \{0\}$.

\Downarrow

- $K(x, y, \bar{x}, \bar{y}) = \delta_{y\bar{y}} \left[k(x, \bar{x}) + \sum_{j \in \mathcal{J}} \delta_{y_j \bar{y}_j} \right]$

- Greedy prediction of the successive labels y_t on the basis of the already predicted labels (y_{t+j}), $j \in \mathcal{J}$.

- During training the mapping function can influence the label y_t directly or via the previous predictions.

- Simple heuristics work relatively well (Daume et al., 2005).

- No information about future labels.
Global Inference

- \(\mathcal{J} = [-n; m], n, m > 0. \)
- \(\mathcal{I} = \{0\}. \)

\[
\downarrow
\]

- \(K(x, y, \bar{x}, \bar{y}) = \sum_{s,t} \delta_{y_s, \bar{y}_t} k(x_s, \bar{x}_t) + \sum_{s,t} \delta_{y_s, \bar{y}_t} \delta_{y_{s+1}, \bar{y}_{t+1}}. \)

- Label \(y_t \) depends on both past and future output labels.
- The output structure is considered as a whole object.
- Sophisticated inferences methods, such as, in simple cases, the Viterbi algorithm (Taskar et al., 2005), (Tschantaridis et al., 2005).
- This involves bigger output spaces, larger number of features, higher computational costs.
Summary

• **Compared algorithms:**
 LaRank with **online** and **offline** stopping criteria using as inference step:
 1. Multiclass classification over tokens *denoted* Multiclass.
 2. Greedy inference using input context *denoted* Greedy (inputs).

 ⇒ **8 slightly different methods.**

• **Experimental remarks:**
 – Comparison with external reference: SVMstruct or CRF.
 – Same features for all algorithms.
 – Only linear input kernel functions have been used.
 – **Greedy** (labels) has been trained using correct previous labels as context.
1st task: Optical Character Recognition

Task description:
– Recognize handwritten characters of a word.
– Example:

\[
\begin{array}{c}
m u l e \\
m u l e
\end{array}
\]

Dataset:

<table>
<thead>
<tr>
<th>Classes</th>
<th>Training Seq. (Tokens)</th>
<th>Testing Seq. (Tokens)</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>650 (4,600)</td>
<td>5,500 (43,000)</td>
<td>128</td>
</tr>
</tbody>
</table>

Context Size:
– **Greedy (inputs)**: a window of 25 input tokens.
– **Greedy (labels)**: 10 previous labels.
1st task: Optical Character Recognition

![Graph showing label accuracy vs. training time]
Influence of the Context Length

- **Inference complexity** for a sequence of length l with N possible labels:
 - $O(lN^2)$ with global inference (with 1^{st} order dependencies).
 - $O(lN)$ with greedy inference.

- Global inference is restricted to 1^{st} order for tractability reasons.

- **Using a larger context** can lead to **better generalization**.
2nd task: Part-Of-Speech Tagging

Task description:
- Label each word of a text with its Part-Of-Speech tag.
- Example:

```
PRP  VBD  DT  NN
He / opened / the / window
```

Dataset:

<table>
<thead>
<tr>
<th>Classes</th>
<th>Training Seq.(Tokens)</th>
<th>Testing Seq.(Tokens)</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>7,200 (172,000)</td>
<td>1,681 (40,000)</td>
<td>>400,000</td>
</tr>
</tbody>
</table>

Context Size:
- **Greedy (inputs)**: a window of 3 input tokens.
- **Greedy (labels)**: 2 previous labels.
2nd task: Part-Of-Speech Tagging
Invariances

- **Output space size** for a sequence of length l with N possible labels:
 - N^l with global inference.
 - lN with greedy inference (l successive decisions).

- **Support Vectors for the global model** are complete sequences:
 - Local dependencies are not represented in an invariant fashion.
 → More support vectors per support pattern.

- **Greedy inference** can deal with invariances.
3rd task: Chunking

Task description:
- Divide a text in syntactically correlated parts.
- Example:

```
NP VP NP VP PP NP
He / reckons / the current account deficit / will narrow / to / only 1.8 billion
```

Dataset:

<table>
<thead>
<tr>
<th>Classes</th>
<th>Training Seq.(Tokens)</th>
<th>Testing Seq.(Tokens)</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>8,931 (212,000)</td>
<td>2,012 (47,000)</td>
<td>>76,000</td>
</tr>
</tbody>
</table>

Context Size:
- **Greedy (inputs)**: a window of 3 input tokens.
- **Greedy (labels)**: 2 previous labels.
3rd task: Text Chunking
Partial Conclusion

- **Greedy** & **global** inference: similar generalization performances.

- Using LaRank as optimizer allows **fast training**.
 (5 min for POS or Chunking)

- But greedy inference → local decisions:
 - Factorization of output space.
 - Handling of invariances.
 → **Efficient online learning**.

- **Online learning + Greedy inference = most efficient combination.**
 (training in 30 sec. for POS or Chunking)

- Limitations of greedy inference:
 - Long-term dependencies.
 - Weak-supervision.
Part IV

Kernels
Large Scale Task: POS Tagging (bigger)

Task description:
- Label each word of a text with its Part-Of-Speech tag.

Dataset: the whole Wall Street Journal dataset.

<table>
<thead>
<tr>
<th>Classes</th>
<th>Training Seq.(Tokens)</th>
<th>Testing Seq.(Tokens)</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>107,633 (3,072,872)</td>
<td>5,284 (149,168)</td>
<td>>130,000</td>
</tr>
</tbody>
</table>

Context Size:
- Greedy (inputs): a window of 3 input tokens.
- Greedy (labels): 2 previous labels.
4th task: Big Part-Of-Speech Tagging
Why the MLN is fast

The key: **Lookup tables.**

→ **SGD on a vector of 160 attributes** $\ll 130,000$!

→ **Learned via backpropagation:** hard to efficiently do with an SVM.
Conclusion

On simple tasks:

- Simple and sophisticated inference methods have similar performances and using LaRank can speed-up training.

- Greedy inference allows an efficient online training (faster).

- But all kernel-based methods are limited by their representation. → Multi Layer Networks are not!