Recurrent Nets and Attention for System 2 Processing

Yoshua Bengio

July 30th, 2018, CIFAR Deep Learning & Reinforcement Learning Summer School, Toronto
Recurrent Neural Networks

- Can read or produce an output at each time step: unfolding the graph tells us how to back-prop through time.
Recurrent Neural Networks

- Selectively summarize an input sequence in a fixed-size state vector via a recursive update

\[s_t = F_{\theta}(s_{t-1}, x_t) \]

\[s_t = G_t(x_t, x_{t-1}, x_{t-2}, \ldots, x_2, x_1) \]

⇒ Generalizes naturally to new lengths not seen during training
Generative RNNs

- An RNN can represent a fully-connected directed generative model: every variable predicted from all previous ones.

\[P(x) = P(x_1, \ldots x_T) = \prod_{t=1}^{T} P(x_t|x_{t-1}, x_{t-2}, \ldots x_1) \]

\[L_t = -\log P(x_t|x_{t-1}, x_{t-2}, \ldots x_1) \]
Conditional Distributions

- Sequence to vector
- Sequence to sequence of the same length, aligned
- Vector to sequence
- Sequence to sequence
Maximum Likelihood = Teacher Forcing

- During training, past y in input is from training data
- At generation time, past y in input is generated
- Mismatch can cause "compounding error"

$\hat{y}_t \sim P(y_t \mid h_t)$

$(x_t, y_t) : \text{next input/output training pair}$
Ideas to reduce the train/generate mismatch in teacher forcing

• Scheduled sampling (*S. Bengio et al, NIPS 2015*)

• Backprop through open-loop sampling recurrence & minimize long-term cost (but which one? GAN would be most natural → *Professor Forcing, NIPS’2016*)

Related to
SEARN (Daumé et al 2009)
DAGGER (Ross et al 2010)
Gradually increase the probability of using the model’s samples vs the ground truth as input.
Increasing the Expressive Power of RNNs with more Depth

- ICLR 2014, *How to construct deep recurrent neural networks*

Ordinary RNNs

+ stacking

Deep RNNs

+ deep hid-to-out
+ deep hid-to-hid
+ deep in-to-hid

+ skip connections for creating shorter paths
Bidirectional RNNs, Recursive Nets, Multidimensional RNNs, etc.

- The unfolded architecture needs not be a straight chain

Recursive (tree-structured) Neural Nets:
- Frasconi et al 97
- Socher et al 2011

Bidirectional RNNs (Schuster and Paliwal, 1997)

See Alex Graves’s work, e.g., 2012

Multidimensional RNNs, Graves et al 2007
Multiplicative Interactions

(Wu et al, 2016, arXiv:1606.06630)

• Multiplicative Integration RNNs:
 • Replace
 \[\phi(Wx + Uz + b) \]
 • By
 \[\phi(Wx \odot Uz + b) \]
 • Or more general:
 \[\phi(\alpha \odot Wx \odot Uz + \beta_1 \odot Uz + \beta_2 \odot Wx + b) \]
Multiscale or Hierarchical RNNs

(Bengio & Elhihi, NIPS 1995)

- **Motivation:**
 - Gradients can propagate over longer spans through slow time-scale paths

- **Approach:**
 - Introduce a network architecture that update the states of its hidden layers with different speeds in order to capture multiscale representation of sequences.
Learning Long-Term Dependencies with Gradient Descent is Difficult

How to store 1 bit? Dynamics with multiple basins of attraction in some dimensions

- Some subspace of the state can store 1 or more bits of information if the dynamical system has multiple basins of attraction in some dimensions

Note: gradients MUST be high near the boundary
Robustly storing 1 bit in the presence of bounded noise

- With spectral radius > 1, noise can kick state out of attractor
- Stable with radius < 1
Storing Reliably ➔ Vanishing gradients

- Reliably storing bits of information requires spectral radius < 1
- The product of T matrices whose spectral radius is < 1 is a matrix whose spectral radius converges to 0 at exponential rate in T

\[
L = L(s_T(s_{T-1}(\ldots s_{t+1}(s_t, \ldots))))
\]

\[
\frac{\partial L}{\partial s_t} = \frac{\partial L}{\partial s_T} \frac{\partial s_T}{\partial s_{T-1}} \ldots \frac{\partial s_{t+1}}{\partial s_t}
\]

- If spectral radius of Jacobian is < 1 ➔ propagated gradients vanish
Vanishing or Exploding Gradients

- Hochreiter’s 1991 MSc thesis (in German) had independently discovered that backpropagated gradients in RNNs tend to either vanish or explode as sequence length increases.
Why it hurts gradient-based learning

- Long-term dependencies get a weight that is exponentially smaller (in T) compared to short-term dependencies

$$\frac{\partial C_t}{\partial W} = \sum_{\tau \leq t} \frac{\partial C_t}{\partial a_\tau} \frac{\partial a_\tau}{\partial W} = \sum_{\tau \leq t} \frac{\partial C_t}{\partial a_t} \frac{\partial a_t}{\partial W}$$

Becomes exponentially smaller for longer time differences, when spectral radius < 1
Vanishing Gradients in Deep Nets are Different from the Case in RNNs

- If it was just a case of vanishing gradients in deep nets, we could just rescale the per-layer learning rate, but that does not really fix the training difficulties.

- Can’t do that with RNNs because the weights are shared, & total true gradient = sum over different “depths”

\[
\frac{\partial C_t}{\partial W} = \sum_{\tau \leq t} \frac{\partial C_t}{\partial a_{\tau}} \frac{\partial a_{\tau}}{\partial W} = \sum_{\tau \leq t} \frac{\partial C_t}{\partial a_t} \frac{\partial a_t}{\partial a_{\tau}} \frac{\partial a_{\tau}}{\partial W}
\]
To store information robustly the dynamics must be contractive

- The RNN gradient is a product of Jacobian matrices, each associated with a step in the forward computation. To store information robustly in a finite-dimensional state, the dynamics must be contractive [Bengio et al 1994].

\[
L = L(s_T(s_{T-1}(\ldots s_{t+1}(s_t, \ldots))))
\]

\[
\frac{\partial L}{\partial s_t} = \frac{\partial L}{\partial s_T} \frac{\partial s_T}{\partial s_{T-1}} \ldots \frac{\partial s_{t+1}}{\partial s_t}
\]

- Problems:
 - e-values of Jacobians $> 1 \rightarrow$ gradients explode
 - or e-values $< 1 \rightarrow$ gradients shrink & vanish
 - or random \rightarrow variance grows exponentially

Storing bits robustly requires e-values < 1

Gradient clipping
Dealing with Gradient Explosion by Gradient Norm Clipping

\[
\hat{g} \leftarrow \frac{\partial \text{error}}{\partial \theta}
\]

If \[\|\hat{g}\| \geq \text{threshold}\] then

\[
\hat{g} \leftarrow \frac{\text{threshold}}{\|\hat{g}\|} \hat{g}
\]

end if

(Mikolov thesis 2012; Pascanu, Mikolov, Bengio, ICML 2013)
RNN Tricks
(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

- Clipping gradients (avoid exploding gradients)
- Skip connections & leaky integration (propagate further)
- Multiple time scales / hierarchy (propagate further)
- Momentum (cheap 2nd order)
- Initialization (start in right ballpark avoids exploding/vanishing)
- Sparse Gradients (symmetry breaking)
- Gradient propagation regularizer (avoid vanishing gradient)
- Gated self-loops (LSTM & GRU, reduces vanishing gradient)
Delays & Hierarchies to Reach Farther

- Delays and multiple time scales, *Elhihi & Bengio NIPS 1995, Koutnik et al ICML 2014*
- How to do this right?
- How to automatically and adaptively do it?

Hierarchical RNNs (words / sentences): *Sordoni et al CIKM 2015, Serban et al AAAI 2016*
Hand-crafted segmentation

Learned segmentation

soft segmentation:
can be trained by backprop
Hierarchical Multiscale RNNs
Chung, Ahn & Bengio ICLR’2017

Boundary detectors have binary states!

Gradient signal:
- straight-through
- REINFORCE

<table>
<thead>
<tr>
<th>Model</th>
<th>BPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>td-LSTM (Zhang et al., 2016)</td>
<td>1.63</td>
</tr>
<tr>
<td>HF-MRNN (Mikolov et al., 2012)</td>
<td>1.54</td>
</tr>
<tr>
<td>MI-RNN (Wu et al., 2016)</td>
<td>1.52</td>
</tr>
<tr>
<td>Skipping-RNN (Pachitariu & Sahani, 2013)</td>
<td>1.48</td>
</tr>
<tr>
<td>MI-LSTM (Wu et al., 2016)</td>
<td>1.44</td>
</tr>
<tr>
<td>BatchNorm LSTM (Cooijmans et al., 2016)</td>
<td>1.36</td>
</tr>
<tr>
<td>HM-LSTM</td>
<td>1.32</td>
</tr>
<tr>
<td>LayerNorm HM-LSTM</td>
<td>1.29</td>
</tr>
</tbody>
</table>
Fighting the vanishing gradient: LSTM & GRU
(Hochreiter 1991); first version of the LSTM, called Neural Long-Term Storage with self-loop

- Create a path where gradients can flow for longer with a
- Corresponds to an eigenvalue of Jacobian slightly less than 1
- LSTM is now heavily used (Hochreiter & Schmidhuber 1997)
- GRU light-weight version (Cho et al 2014)
Gating for Attention-Based Neural Machine Translation

Related to earlier Graves 2013 for generating handwriting

\[
a_j = \frac{e^{A(z_i, h_j)}}{\sum_j e^{A(z_i, h_j')}}
\]

\[
r = \sum_j a_j h_j
\]

Read = weighted average of attended contents

\[f = (\text{La, croissance, economique, s'est, ralentie, ces, dernieres, annes, .})\]

\[e = (\text{Economic, growth, has, slowed, down, in, recent, years, .})\]
Incorporating the idea of attention, using GATING units, has unlocked a breakthrough in machine translation: (ICLR’2015)

Neural Machine Translation

Softmax over lower locations conditioned on context at lower and higher locations

n-gram translation current neural net translation human translation

Human evaluation

Now in Google Translate
Graph Attention Networks
Velickovic et al, ICLR 2018

- Handle variable-size neighborhood of each node using the same neural net by using an attention mechanism to aggregate information from the neighbors
- Use multiple attention heads to collect different kinds of information
Attention Mechanisms for Memory Access

- Neural Turing Machines \((Graves et al 2014)\)
- and Memory Networks \((Weston et al 2014)\)
- Use a content-based attention mechanism \((Bahdanau et al 2014)\) to control the read and write access into a memory
- The attention mechanism outputs a softmax over memory locations

\[
\alpha_i = \frac{e^{f_i(h)}}{\sum_j e^{f_j(h)}}
\]

\[
r = \sum_i \alpha_i c_i
\]

Read = weighted average of attended contents
From Memory to System 2

- Attention has also opened the door to neural nets which can write to and read from a memory
 - 2 systems:
 - Cortex-like (state controller and representations)
 - System 1, intuition, fast heuristic answer (what current DL does quite well)
 - Hippocampus-like (memory) + prefrontal cortex
 - System 2, slow, logical, sequential

- Memory-augmented networks gave rise to
 - Systems which reason
 - Sequentially combining several selected pieces of information (from the memory) in order to obtain a conclusion
 - Systems which answer questions
 - Accessing relevant facts and combining them
Large Memory Networks: Sparse Access Memory for Long-Term Dependencies

- Memory = part of the state
- Memory-based networks are special RNNs
- A mental state stored in an external memory can stay for arbitrarily long durations, until it is overwritten (partially or not)
- Forgetting = vanishing gradient.
- Memory = higher-dimensional state, avoiding or reducing the need for forgetting/vanishing
Pointing the Unknown Words

Based on ‘Pointer Networks’, Vinyals et al 2015

The next word generated can either come from vocabulary or is copied from the input sequence.

Table 5: Europarl Dataset (EN-FR)

<table>
<thead>
<tr>
<th></th>
<th>BLEU-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMT</td>
<td>20.19</td>
</tr>
<tr>
<td>NMT + PS</td>
<td>23.76</td>
</tr>
</tbody>
</table>

Table 3: Results on Gigaword Corpus for modeling UNK’s with pointers in terms of recall.

<table>
<thead>
<tr>
<th></th>
<th>Rouge-1</th>
<th>Rouge-2</th>
<th>Rouge-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMT + lvt</td>
<td>36.45</td>
<td>17.41</td>
<td>33.90</td>
</tr>
<tr>
<td>NMT + lvt + PS</td>
<td>37.29</td>
<td>17.75</td>
<td>34.70</td>
</tr>
</tbody>
</table>

Text summarization
Variational Hierarchical RNNs for Dialogue Generation *(Serban et al 2016)*

- Lower level = words of an utterance (turn of speech)
- Upper level = state of the dialogue
- Inject high-level choices
Multi-Head Attention

We can run multiple attention mechanisms in parallel to focus on different aspects of the data.

\[
\text{Attention}(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right)V
\]

\[
\text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V).
\]

\[
\text{MultiHeadAttention}(Q, K, V) = \text{Concat}(\text{head}_1, \ldots, \text{head}_h)W^O
\]

Fig: Michal Chromiak’s blog
Self-Attention & Transformers

- **Parallelize** encoder
- Encode location of each item, no need for RNN
- Transform each location based on attention from all others
- See also Sparse Attentive Backtracking, Ke et al Arxiv:1711.02326

From: Jakob Uszkoreit, Google AI Blog, 2017
Using an Associative Memory to Bridge Large Time Spans and Avoid BPTT

- Associate past and present events using a predictor, which acts like a trainable attentive skip connection between associated events
- Sparse attention to select few such events

May be a way for brains to avoid implausible BPTT

Self-Attentive Backtracking, Ke et al Arxiv: 1711.02326
Still Far from Human-Level AI

- Industrial successes mostly based on **supervised** learning

 ![Image](image.png)

 - Learning superficial clues, not generalizing well outside of training contexts, easy to fool trained networks:
 - Current models cheat by picking on surface regularities

- Need to climb the ladder of higher-level abstractions
How to Discover Good Disentangled Representations

• How to discover abstractions?
• What is a good representation? *(Bengio et al 2013)*
• Need clues (= priors) to help disentangle the underlying factors, e.g.
 • Spatial & temporal scales
 • Marginal independence
 • Simple dependencies between factors
 • Consciousness prior
 • Causal / mechanism independence
 • Controllable factors
Acting to Guide Representation Learning & Disentangling

(E. Bengio et al, 2017; V. Thomas et al, 2017)

- Some factors (e.g. objects) correspond to ‘independently controllable’ aspects of the world
- Can only be discovered by acting in the world
 - Control linked to notion of objects & agents
 - Causal but agent-specific & subjective: affordances
Abstraction Challenge for Unsupervised Learning

• Why is modeling $P(\text{acoustics})$ so much worse than modeling $P(\text{acoustics} \mid \text{phonemes}) P(\text{phonemes})$?

• Wrong level of abstraction?

• many more entropy bits in acoustic details then linguistic content

→ predict the future in an abstract space instead: non-trivial
The Consciousness Prior
Bengio 2017, arXiv:1709.08568

- Conscious thoughts are very low-dimensional objects compared to the full state of the (unconscious) brain
- Yet they have unexpected predictive value or usefulness
 → strong constraint or prior on the und
- **Thought**: composition of few selected factors / concepts (key/value) at the highest level of abstraction of our brain
- Richer than but closely associated with short verbal expression such as a **sentence** or phrase, a **rule** or **fact** (link to classical symbolic AI & knowledge representation)
How to select a few relevant abstract concepts making a thought?

Content-based Attention
On the Relation between Abstraction and Attention

- Attention allows to focus on a few elements out of a large set
- Soft-attention allows this process to be trainable with gradient-based optimization and backprop

Attention focuses on a few appropriate abstract or concrete elements of mental representation
The Consciousness Prior
Bengio 2017, arXiv:1709.08568

- 2 levels of representation:
 - High-dimensional abstract representation space (all known concepts and factors) h
 - Low-dimensional conscious thought c,
Disentangling up to Linear Projection

- My old view of disentangling: each dimension of the representation = one ‘nameable’ (semantic) factor

- Potential problem: the number of ‘nameable’ factors is limited by the number of units, and brains don’t use a completely localized representation for named things

- My current view of disentangling: it is enough that a linear projection exist to ‘classify’ or ‘predict’ any of the factors

- The ‘number’ of potential ‘nameable’ factors is now exponentially larger (e.g. subsets of dimensions, weights of these projections)
Conscious prediction over attended variables A (soft attention)

$$V = - \sum_{A} w_A \log P(h_{t,A} = a | c_{t-1})$$

- Earlier conscious state
- Conscious state c
- Input x
- Unconscious state h
- Attention

Attention weights
Factor name
Predicted value
Earlier conscious state
What Training Objective?

- How to train the attention mechanism which selects which variables to predict?
 - Representation learning without reconstruction:
 - Maximize entropy of code
 - Maximize mutual information between past and future
 - **Objective function completely in abstract space, higher-level parameters model dependencies in abstract space**
 - Usefulness of thoughts: as conditioning information for action, i.e., a particular form of planning for RL, i.e., the estimated gradient of rewards could also be used to drive learning of abstract representations
Montreal Institute for Learning Algorithms

Mila

Université de Montréal