Deep learning in the brain
Deep learning summer school
Toronto 2018

Blake Aaron Richards
Learning in Neural Circuits Laboratory
Department of Biological Sciences
University of Toronto Scarborough

linclab.org
The recent success of deep learning in artificial intelligence (AI) means that most people associate it exclusively with AI.

But, one of the goals of (some) deep learning research has always been to understand how our own brains work.

In this session, I'm going to give you a brief overview on current research into the challenges associated with connecting deep learning and neuroscience, and some of the work in this area.
1. Why deep learning is not just for AI

Deep learning models are a better fit to neocortical representations than models developed by neuroscientists!

A little more motivation:

Deep learning models are a better fit to neocortical representations than models developed by neuroscientists!

This would suggest that our neocortex is doing something akin to deep learning

At an abstract level, deep neural networks operate with some similar principals to the real brain (though there are some important differences!)
1. Why deep learning is not just for AI

At an abstract level, deep neural networks operate with some similar principals to the real brain (though there are some important differences!)

Yamins & DiCarlo (2016), Nature Neuroscience
2. Foundations: what is required for deep learning?

The key feature of deep learning is the ability to engage in **end-to-end optimization** in a many-layered network.

To do so, you must be able to assign “credit” (or “blame”) to synapses in the hidden layers for their contribution to the output of the network.

The behavioral effects of changes to these synaptic connections... depend on everything that happens up here.
The most obvious solution to credit assignment is to explicitly calculate the partial derivative of your cost function with respect to your synaptic weights in the hidden layers (AKA backpropagation).

\[
\begin{align*}
 u &= W_0 x, \quad v = W_1 h \\
 h &= \sigma(u), \quad y = \sigma(v) \\
 e &= (y - t), \quad L = \frac{1}{2} e^2 \\
 \Delta W_0 &\propto \frac{\partial L}{\partial W_0} \\
 &= \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial h} \cdot \frac{\partial h}{\partial u} \cdot \frac{\partial u}{\partial W_0} \\
 &= e \cdot W_1^T \cdot \sigma'(u) \cdot x
\end{align*}
\]
The most obvious solution to credit assignment is to explicitly calculate the partial derivative of your cost function with respect to your synaptic weights in the hidden layers (AKA backpropagation).

$$\Delta W_0 \propto e \cdot W_1^T \cdot \sigma'(u) \cdot x$$

Here's what we need to do backprop updates in the hidden layer.
The most obvious solution to credit assignment is to explicitly calculate the partial derivative of your cost function with respect to your synaptic weights in the hidden layers (AKA backpropagation).

\[\Delta W_0 \propto e \cdot W_1^T \cdot \sigma'(u) \cdot x \]

We need the error (difference between output generated by a forward pass and the target)
The most obvious solution to credit assignment is to explicitly calculate the partial derivative of your cost function with respect to your synaptic weights in the hidden layers (AKA backpropagation)

\[\Delta W_0 \propto e \cdot W_1^\top \cdot \sigma'(u) \cdot x \]

We need to multiply that error by the transpose of \(W_1 \)
3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly calculate the partial derivative of your cost function with respect to your synaptic weights in the hidden layers (AKA backpropagation)

$$\Delta W_0 \propto e \cdot W_1^T \cdot \sigma'(u) \cdot x$$

We need the derivative of the hidden unit activation function.
The most obvious solution to credit assignment is to explicitly calculate the partial derivative of your cost function with respect to your synaptic weights in the hidden layers (AKA backpropagation):

$$\Delta W_0 \propto e \cdot W_1^T \cdot \sigma'(u) \cdot x$$

We need a forward pass without backwards flow of activity.
Unfortunately, all four of those things we need are biologically problematic...

\[\Delta W_0 \propto e \cdot W_1^T \cdot \sigma'(u) \cdot x \]

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes
Unfortunately, all four of those things we need are biologically problematic...

\[\Delta W_0 \propto e \cdot W_1^T \cdot \sigma'(u) \cdot x \]

We need:

1. Error term
2. Transpose of downstream weights
3. Derivative of activation function
4. Separate forward and backward passes

Moreover, it's not immediately clear that this even fits with what we do know about synaptic changes in the brain...
Unfortunately, all four of those things we need are biologically problematic...

\[\Delta W_0 \propto e \cdot W_1^T \cdot \sigma'(u) \cdot x \]

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

The last couple of years have seen much progress in addressing all four of these issues – I'm gonna bring you up-to-date and maybe just convince you that the brain might also do end-to-end optimization!
The brain can definitely calculate errors, but there's no evidence that synapses change based on error terms, instead it seems to use the timing of *spikes*: a phenomenon known as *spike-timing-dependent plasticity*.
The brain can definitely calculate errors, but there's no evidence that synapses change based on error terms, instead it seems to use the timing of *spikes*: a phenomenon known as *spike-timing-dependent plasticity*.

![Graph showing synaptic change vs. spike timing](image)
Scellier & Bengio (2017) proposed Equilibrium Propagation, which uses a “free phase” (with no external feedback) and a “weakly clamped phase” (where the external environment nudges the network towards the correct answer)

\[u = \{ x, h, y \} \text{ w/o sigmoid} \]

\[\beta > 0 \quad \text{weakly clamped phase} \]

\[\beta = 0 \quad \text{free phase} \]

If we assume symmetric weights between units then in the limit \(\beta \rightarrow 0 \)

\[\Delta W_{ij} = \frac{1}{\beta} \left(\sigma (u_i^\beta) \sigma (u_j^\beta) - \sigma (u_i^0) \sigma (u_j^0) \right) \]

This can be shown to implement backprop!

And fascinatingly, it predicts **spike-timing-dependent plasticity (STDP)**

If this relationship holds:

$$\frac{dW_{ij}}{dt} = \sigma(u_j) \frac{du_i}{dt}$$

We can get the same STDP result experimentalists see

And this relationship does hold (approx.) for equilibrium propagation

5. Issue one: error term

\[\Delta W_0 \propto e \cdot W_1^T \cdot \sigma'(u) \cdot x \]

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

One item down:
We can do gradient descent without explicit error terms being used to update synapses (and it seems to match experimental data on STDP)
As noted, the backprop update rule assumes that the hidden layer neurons have access to the error term multiplied by the transpose of the downstream weights, W_1

That's not a realistic proposal for the brain, and it has led many neuroscientists to dismiss backprop.

Lillicrap et al. (2016), Nat. Commi. 7(13276)
6. Issue two: downstream weights

As noted, the backprop update rule assumes that the hidden layer neurons have access to the error term multiplied by the transpose of the downstream weights, W_1

Timothy Lillicrap had an idea, maybe we could train the network to develop symmetric weights?

Lillicrap et al. (2016), Nat. Commi. 7(13276)
As noted, the backprop update rule assumes that the hidden layer neurons have access to the error term multiplied by the transpose of the downstream weights, W_1.

Timothy Lillicrap had an idea, maybe we could train the network to develop symmetric weights?

To test his first attempt at such an algorithm, he used a control condition wherein the error was sent back through a random matrix B.

Lillicrap et al. (2016), Nat. Comm. 7(13276)
Weirdly, the control network learned quite well!!!

Results on MNIST:

Lillicrap et al. (2016), Nat. Commi. 7(13276)
6. Issue two: downstream weights

Weirdly, the control network learned quite well!!!

Results on MNIST:

The reason was that the forward weights “aligned” themselves with the backwards weights

Lillicrap et al. (2016), Nat. Commi. 7(13276)
There's still some work to do though...

<table>
<thead>
<tr>
<th>Method</th>
<th>Top-1</th>
<th>Top-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTP, parallel</td>
<td>98.34</td>
<td>94.56</td>
</tr>
<tr>
<td>SDTP, parallel</td>
<td>99.28</td>
<td>97.15</td>
</tr>
<tr>
<td>FA</td>
<td>93.08</td>
<td>82.54</td>
</tr>
<tr>
<td>BACKPROPAGATION</td>
<td>71.79</td>
<td>49.54</td>
</tr>
<tr>
<td>BACKPROPAGATION, CONVNET</td>
<td>63.93</td>
<td>40.17</td>
</tr>
</tbody>
</table>

Table 2. Test errors on ImageNet.

Bartunov et al. (2018) – ICML
6. Issue two: downstream weights

\[\Delta W_0 \propto e \cdot W_1^T \cdot \sigma'(u) \cdot x \]

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

Two items down:
We can do gradient descent without the transpose of downstream weights
7. Issue three: derivatives of spikes

Neurons don't communicate with analog signals. Spikes are all-or-none events

This usually gets represented with a non-differentiable δ function:

$$S_i(t) = \sum_k \delta(t - t_k)$$

$$\delta(x) = \begin{cases}
0, & \text{if } x \neq 0 \\
\frac{1}{dt}, & \text{otherwise}
\end{cases}$$
Neurons don't communicate with analog signals. Spikes are all-or-none events.

But, remember, we need to take the derivative of the activation function, which is supposed to represent the spiking activity...

We could treat the activation function as the spike rate (which is the typical interpretation), but that's problematic, since there's good evidence that the specific timing of spikes can carry a fair bit of information.

This usually gets represented with a non-differentiable δ function:

\[S_i(t) = \sum_k \delta(t - t_k) \]

\[\delta(x) = \begin{cases} 0, & \text{if } x \neq 0 \\ \frac{1}{dt}, & \text{o/w} \end{cases} \]
Zenke & Ganguli (2018) approach this by first modifying the loss function to minimize the van Rossum distance between a target spike train and the actual spike train:

\[L = \frac{1}{2t} \int_{-\infty}^{t} ds \left[(\alpha \ast \hat{S}_i - \alpha \ast S_i)(s) \right]^2 \]

Where \(\hat{S}_i \) is the target spike train, and \(\alpha \) is a temporal convolution kernel.

Taking the gradient, we get:

\[\frac{\partial L}{\partial W_{ij}} = -\int_{-\infty}^{t} ds \left[(\alpha \ast \hat{S}_i - \alpha \ast S_i)(s) \right] (\alpha \ast \frac{\partial S_i}{\partial W_{ij}})(s) \]

7. Issue three: derivatives of spikes

Zenke & Ganguli (2018) approach this by first modifying the loss function to minimize the van Rossum distance between a target spike train and the actual spike train:

$$L = \frac{1}{2} \int_{-\infty}^{t} ds \left[(\alpha \ast \hat{S}_i - \alpha \ast S_i)(s) \right]^2$$

Where \hat{S}_i is the target spike train, and α is a temporal convolution kernel.

Taking the gradient, we get:

$$\frac{\partial L}{\partial W_{ij}} = -\int_{-\infty}^{t} ds \left[(\alpha \ast \hat{S}_i - \alpha \ast S_i)(s) \right] (\alpha \ast \frac{\partial S_i}{\partial W_{ij}})(s)$$

Ah, but here's this bugger...

Zenke & Ganguli (2018) deal with the spike train derivative by replacing the spike train, S_i, in the gradient equation with an auxiliary function of the membrane potential, $\sigma(U_i(t))$, where:

$$U_i(t) \approx \sum_j W_{ij}(\epsilon \ast S_j(t))$$

Where ϵ is the shape of the postsynaptic response to a spike.

We can then estimate the gradient with:

$$\frac{\partial L}{\partial W_{ij}} \approx -\int_{-\infty}^{t} ds \left[(\alpha \ast \hat{S}_i - \alpha \ast S_i)(s) \right] \alpha(\sigma'(U_i(s)))(\epsilon \ast S_j)(s)$$

Zenke & Ganguli (2018) deal with the spike train derivative by replacing the spike train, S_i, in the gradient equation with an auxiliary function of the membrane potential, $\sigma(U_i(t))$, where:

$$U_i(t) \approx \sum_j W_{ij}(\epsilon \ast S_j(t))$$

Where ϵ is the shape of the postsynaptic response to a spike.

We can then estimate the gradient with:

$$\frac{\partial L}{\partial W_{ij}} \approx - \int_{-\infty}^{t} ds \left[(\alpha \ast \hat{S}_i - \alpha \ast S_i)(s) \right] \alpha(\sigma'(U_i(s)))(\epsilon \ast S_j)(s)$$

Error term

Eligibility trace

The network can now be trained to generate specific spike sequences:

Training in networks with hidden layers is a straightforward extension:

7. Issue three: derivatives of spikes

\[\Delta W_0 \propto e \cdot W_1^T \cdot \sigma'(u) \cdot x \]

We need:
1. Error term
2. Transpose of downstream weights
3. Derivative of activation function
4. Separate forward and backward passes

Three items down:
We approximate gradient descent with precise spike trains
Our brains are constantly active (don't listen to the media), and there are massive backwards projections everywhere you look.

At face value that would suggest that there probably isn't a forward pass followed by a backward pass...
However, real neurons in the neocortex are far more complicated than the linear-non-linear points we typically use in neural networks.

The majority of neurons in the neocortex are pyramidal neurons, which are shaped kind of like a big tree.
Basal dendrites
Apical dendrites

Basal dendrites

Feedback

Feedforward
The apical dendrites are electrotonically segregated from the cell body, they communicate via non-linear plateau potentials.

Larkum, Zhu & Sakmann. (1999), Nature
Simultaneous basal and apical inputs can trigger plateau potentials, so burst-firing functions as a **coincidence detector**.
My laboratory has been working on neural network models that incorporate pyramidal neuron multiplexing to solve credit assignment.

Each unit in the hidden layers of the networks are assumed to be an ensemble of pyramidal neurons with two distinct compartments (apical and soma).

Bottom-up, feedforward inputs arrive at the soma compartments, while top-down, feedback inputs arrive at the apical compartments.
We now assume that each unit in the network is an ensemble of neurons, which can multiplex bottom-up and top-down signals.

The bottom-up signals determine an event rate:

\[h^k(t) \]

The top-down signals determine the burst probability:

\[p^k(t) \]

The product of the event-rate and burst probability determines the burst rate:

\[\beta^k(t) = h^k(t) \odot p^k(t) \]

See also: Körding & König (2001), J. Comp. Neurosci., 11(3): 207
We now assume that each unit in the network is an ensemble of neurons, which can multiplex bottom-up and top-down signals.

We use a local loss function based on the temporal difference in bursting. If the impact of an instructive “nudge” arrives at time t^*:

$$L^{W^k}(t^*) = \|\beta^k(t^*) - \beta^k(t^* - 1)\|_2^2$$

$$\Delta W^k(t^*) = \alpha(t^*) \frac{\partial L^{W^k}(t^*)}{\partial W^k}$$
The multiplexing allows us to run the network in time without separate forward/backward passes.
The multiplexing allows us to run the network in time without separate forward/backward passes.

Each image in the training set is presented for 100 ms of simulated time, and one nudge is received.

We test the network's error rates after each run through the 50,000 training images (referred to as an epoch), 10,000 images from the training set are reserved for hyperparameter optimization.
The multiplexing allows us to run the network in time without separate forward/backward passes.
The multiplexing allows us to run the network in time without separate forward/backward passes.
We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

Four items down:
The neocortex is effectively designed to multiplex forward passes and backward passes simultaneously!
I began this talk by identifying four major issues with the biological plausibility of the backpropagation weight update rule for hidden layers:

\[\Delta W_0 \propto e \cdot W_1^T \cdot \sigma'(u) \cdot x \]

(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

For decades, neuroscientists have dismissed the possibility of deep learning in the brain because of these issues, but over the last two years every one of these problems have been demonstrated as being very surmountable!!!
This is all very exciting, but there's still an elephant in the room:

backprop through time
10. Major unresolved issue: backprop through time

Backprop through time is critical for training recurrent nets, but it is very hard to see how it could be done in a biologically realistic manner.

As it is, backprop through time requires time-stamped records of activity patterns and inputs – not an easy ask for a group of real neurons.

There might be some ways to address this, but I'm gonna leave this as an unresolved problem for now...
There's a good reason that deep learning has taken over AI – *it works*

The reasons it works in AI apply equally to our own brains – evolution must have come to use some end-to-end optimization because learning in such high-D space is too hard otherwise (too many directions!)

Our brains may not do backprop specifically, but we are getting to the point where the old objections that prevented us from trying to link deep learning and neuroscience no longer hold water.
11. Conclusion

I'll leave you with the following cool/scary thought...

If our brains are approximating gradient descent, and we can determine the signals used to estimate the gradient, then in the future (with good enough neural prostheses) we could do backprop through an AI back into the brain!

This could give us seamless brain-AI interfaces, which would open the door to some pretty crazy tech...
Questions?

Deep learning summer school
Toronto 2018

Special thanks to:
Jordan Guerguev (U of Toronto)
Timothy Lillicrap (Google DeepMind)
Richard Naud (U of Ottawa)
Thomas Mesnard (MILA)

Financial support

NSERC CRSNG
HFSP
LiNC LAB
linclab.org

Google
CIFAR
ICRA