Bandits and Exploration
(and a few MDPs)

Tor Lattimore
Contents

• What and why of bandit problems
• A little statistics
• How to solve bandit problems
• Scaling up to RL
Bandits

- Reinforcement learning \(S_1, A_1, R_1, S_2, A_2, R_2, \ldots \)
- Bandits \(A_1, R_1, A_2, R_2, \ldots \)

Learning is important
Balancing exploration/exploitation important
No planning
Bandits

Finite action set $\mathcal{A} = \{1, 2, \ldots, k\}$

For each $a \in \mathcal{A}$ there is an **unknown** distribution P_a

Learner chooses $A_t \in \mathcal{A}$ and observes **reward** $R_t \sim P_{A_t}$

Learner wants to maximise $\sum_{t=1}^{n} R_t$
The learning objective

Let \(\mu_a \) be the mean of \(P_a \) and \(\mu^* = \max_{a \in A} \mu_a \)

The optimal action is \(a^* = \arg\max_a \mu_a \)

Our task is to minimise the regret

\[
\mathcal{R}_n = n\mu^* - \mathbb{E} \left[\sum_{t=1}^{n} R_t \right]
\]

The price paid by the learner for not knowing \(\mu \)
A little step into statistics

Given independent and identically distributed

X, X_1, X_2, \ldots, X_n with mean μ and variance σ^2

The empirical mean is

$$\hat{\mu} = \frac{1}{n} \sum_{t=1}^{n} X_t$$
A little step into statistics

Given independent and identically distributed X, X_1, X_2, \ldots, X_n with mean μ and variance σ^2

The empirical mean is $\hat{\mu} = \frac{1}{n} \sum_{t=1}^{n} X_t$

What does the distribution of μ look like?

We know $\mathbb{E}[\hat{\mu}] = \mu$ and $\text{Var}[\hat{\mu}] = \sigma^2 / n$

Chebyshev’s inequality:

$\mathbb{P} (|\hat{\mu} - \mu| \geq \varepsilon) \leq \frac{\sigma^2}{n\varepsilon^2}$
Subgaussian random variables

The **moment generating function** of X is

$$M_X(\lambda) = \mathbb{E}[\exp(\lambda X)]$$

A random variable is **σ-subgaussian** if

$$M_X(\lambda) \leq \exp(\sigma^2 \lambda^2/2) \quad \text{for all } \lambda \in \mathbb{R}$$

<table>
<thead>
<tr>
<th>Distribution</th>
<th>$X \sim \mathcal{N}(\mu, \sigma^2)$</th>
<th>$X - \mu$ is σ-subgaussian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>$X \sim \mathcal{N}(\mu, \sigma^2)$</td>
<td>$X - \mu$ is σ-subgaussian</td>
</tr>
<tr>
<td>Bernoulli</td>
<td>$X \sim \mathcal{B}(\mu)$</td>
<td>$X - \mu$ is $\frac{1}{2}$-subgaussian</td>
</tr>
</tbody>
</table>
Tail bound for σ-subgaussian sums:

$$\mathbb{P}(\hat{\mu} - \mu \geq \varepsilon)$$

$$\exp(\lambda (X - \mu)) \leq \exp(\lambda^2 \sigma^2 / 2)$$
Tail bound for σ-subgaussian sums:

$$
\mathbb{P}(\hat{\mu} - \mu \geq \varepsilon) = \inf_{\lambda > 0} \mathbb{P} \left(\exp(\lambda(\hat{\mu} - \mu)) \geq \exp(\lambda \varepsilon) \right)
$$

$$
\exp(\lambda(X - \mu)) \leq \exp(\lambda^2\sigma^2/2)
$$
Tail bound for σ-subgaussian sums:

\[
\mathbb{P}(\hat{\mu} - \mu \geq \varepsilon) = \inf_{\lambda > 0} \mathbb{P}(\exp(\lambda(\hat{\mu} - \mu)) \geq \exp(\lambda \varepsilon))
\]
\[
\leq \inf_{\lambda > 0} \exp(-\lambda \varepsilon) \mathbb{E}[\exp(\lambda(\hat{\mu} - \mu))]
\]

\[
\exp(\lambda(X - \mu)) \leq \exp(\lambda^2 \sigma^2/2)
\]

\[
\mathbb{P}(|Z| \geq c) \leq \mathbb{E}[|Z|]/c
\]
Tail bound for σ-subgaussian sums:

$$\mathbb{P}(\hat{\mu} - \mu \geq \varepsilon) = \inf_{\lambda > 0} \mathbb{P}(\exp(\lambda(\hat{\mu} - \mu)) \geq \exp(\lambda \varepsilon))$$

$$\leq \inf_{\lambda > 0} \exp(-\lambda \varepsilon) \mathbb{E}[\exp(\lambda(\hat{\mu} - \mu))]$$

$$= \inf_{\lambda > 0} \exp(-\lambda \varepsilon) \prod_{t=1}^{n} \mathbb{E}\left[\exp\left(\frac{\lambda(X_t - \mu)}{n}\right)\right]$$

$$\exp(\lambda(X - \mu)) \leq \exp(\lambda^2 \sigma^2 / 2)$$

$$\lambda(\hat{\mu} - \mu) = \sum_{t=1}^{n} \frac{\lambda(X_t - \mu)}{n}$$
Tail bound for σ-subgaussian sums:

$$\mathbb{P} (\hat{\mu} - \mu \geq \varepsilon) = \inf_{\lambda > 0} \mathbb{P} (\exp (\lambda (\hat{\mu} - \mu)) \geq \exp (\lambda \varepsilon))$$

$$\leq \inf_{\lambda > 0} \exp (-\lambda \varepsilon) \mathbb{E} [\exp (\lambda (\hat{\mu} - \mu))]$$

$$= \inf_{\lambda > 0} \exp (-\lambda \varepsilon) \prod_{t=1}^{n} \mathbb{E} \left[\exp \left(\frac{\lambda (X_t - \mu)}{n} \right) \right]$$

$$\leq \inf_{\lambda > 0} \exp (-\lambda \varepsilon) \prod_{t=1}^{n} \exp \left(\frac{\sigma^2 \lambda^2}{2n^2} \right)$$

$$\exp (\lambda (X - \mu)) \leq \exp (\lambda^2 \sigma^2 / 2)$$

$$\lambda (\hat{\mu} - \mu) = \sum_{t=1}^{n} \frac{\lambda (X_t - \mu)}{n}$$
Tail bound for σ-subgaussian sums:

$$
\mathbb{P}(\hat{\mu} - \mu \geq \varepsilon) = \inf_{\lambda > 0} \mathbb{P}(\exp(\lambda(\hat{\mu} - \mu)) \geq \exp(\lambda \varepsilon))
\leq \inf_{\lambda > 0} \exp(-\lambda \varepsilon) \mathbb{E} \left[\exp(\lambda(\hat{\mu} - \mu)) \right]
= \inf_{\lambda > 0} \exp(-\lambda \varepsilon) \prod_{t=1}^{n} \mathbb{E} \left[\exp \left(\frac{\lambda(X_t - \mu)}{n} \right) \right]
\leq \inf_{\lambda > 0} \exp(-\lambda \varepsilon) \prod_{t=1}^{n} \exp \left(\frac{\sigma^2 \lambda^2}{2n^2} \right)
= \inf_{\lambda > 0} \exp \left(\frac{\sigma^2 \lambda^2}{2n} - \lambda \varepsilon \right)
$$

$$
\exp(\lambda(X - \mu)) \leq \exp(\lambda^2 \sigma^2 / 2)
$$

$$
\lambda(\hat{\mu} - \mu) = \sum_{t=1}^{n} \frac{\lambda(X_t - \mu)}{n}
$$
Tail bound for σ-subgaussian sums:

\[
\mathbb{P}(\hat{\mu} - \mu \geq \varepsilon) = \inf_{\lambda > 0} \mathbb{P}(\exp(\lambda(\hat{\mu} - \mu)) \geq \exp(\lambda \varepsilon))
\]

\[
\leq \inf_{\lambda > 0} \exp(-\lambda \varepsilon) \mathbb{E} \left[\exp(\lambda(\hat{\mu} - \mu)) \right]
\]

\[
= \inf_{\lambda > 0} \exp(-\lambda \varepsilon) \prod_{t=1}^{n} \mathbb{E} \left[\exp \left(\frac{\lambda(X_t - \mu)}{n} \right) \right]
\]

\[
\leq \inf_{\lambda > 0} \exp(-\lambda \varepsilon) \prod_{t=1}^{n} \exp \left(\frac{\sigma^2 \lambda^2}{2n^2} \right)
\]

\[
= \inf_{\lambda > 0} \exp \left(\frac{\sigma^2 \lambda^2}{2n} - \lambda \varepsilon \right)
\]

\[
\exp(\lambda(X - \mu)) \leq \exp(\lambda^2 \sigma^2 / 2)
\]

\[
0 = \frac{d}{d\lambda} \left(\frac{\sigma^2 \lambda^2}{2n} - \lambda \varepsilon \right) = \lambda \sigma^2 / n - \varepsilon
\]
Tail bound for σ-subgaussian sums:

$$
\mathbb{P}(\hat{\mu} - \mu \geq \varepsilon) = \inf_{\lambda > 0} \mathbb{P}(\exp(\lambda(\hat{\mu} - \mu)) \geq \exp(\lambda\varepsilon)) \\
\leq \inf_{\lambda > 0} \exp(-\lambda\varepsilon) \mathbb{E}[\exp(\lambda(\hat{\mu} - \mu))] \\
= \inf_{\lambda > 0} \exp(-\lambda\varepsilon) \prod_{t=1}^{n} \mathbb{E}\left[\exp\left(\frac{\lambda(X_t - \mu)}{n}\right)\right] \\
\leq \inf_{\lambda > 0} \exp(-\lambda\varepsilon) \prod_{t=1}^{n} \exp\left(\frac{\sigma^2\lambda^2}{2n^2}\right) \\
= \inf_{\lambda > 0} \exp\left(\frac{\sigma^2\lambda^2}{2n} - \lambda\varepsilon\right) = \exp\left(-\frac{n\varepsilon^2}{2\sigma^2}\right)
$$

$$
\exp(\lambda(X - \mu)) \leq \exp(\lambda^2\sigma^2/2) \\
0 = \frac{d}{d\lambda}\left(\frac{\sigma^2\lambda^2}{2n} - \lambda\varepsilon\right) = \lambda\sigma^2/n - \varepsilon
$$
Last slide we proved that

$$
\mathbb{P} \left(\hat{\mu} - \mu \geq \varepsilon \right) \leq \exp \left(- \frac{n \varepsilon^2}{2 \sigma^2} \right)
$$

Equating the right-hand side with δ and rearranging things a little,

$$
\mathbb{P} \left(\hat{\mu} - \mu \geq \sqrt{\frac{2\sigma^2 \log(1/\delta)}{n}} \right) \leq \delta
$$

for any $\delta \in (0, 1)$. Chebyshev’s only gives

$$
\mathbb{P} \left(\hat{\mu} - \mu \geq \sqrt{\frac{\sigma^2}{n\delta}} \right) \leq \delta
$$
Concentration of measure summary

Understanding the **distribution** of the **empirical mean** is important.

Without assumptions **Chebyshev’s** is about the best you can do.

Subgaussian assumption leads to much stronger results.

Method is called **Chernoff’s method**.

There are whole books on this topic.
Assumptions

We assume $X - \mu_a$ is 1-subgaussian when $X \sim P_a$ for all actions

Subgaussian bandits
Optimism principle

“You should act as if you are in the **nicest plausible** world possible”
Optimism principle

“You should act as if you are in the nicest plausible world possible”

Guarantees either (a) **optimality** or (b) **exploration**
“Nicest” In bandits, we want the mean to be large

“Plausible” The mean cannot be *much* larger than the empirical mean
“Nicest” In bandits, we want the mean to be large

“Plausible” The mean cannot be much larger than the empirical mean

Upper Confidence Bound Algorithm
Choose each arm once and then

$$A_t = \text{argmax}_a \hat{\mu}_a(t - 1) + \sqrt{\frac{2 \log(1/\delta)}{T_a(t - 1)}}$$

$$\hat{\mu}_a(t) = \text{empirical mean of arm } a \text{ after round } t$$

$$T_a(t) = \text{number of plays of arm } a \text{ after round } t$$

$$\delta = \text{confidence level}$$
Regret analysis

Step 1 Decompose the regret over the arms

Step 2 On a “good” event prove that suboptimal arms are not played too often

Step 3 Show the “good” event occurs with high probability
Regret decomposition

\[R_n = n\mu^* - \mathbb{E}\left[\sum_{t=1}^{n} R_t \right] \]

\[\Delta_a = \mu^* - \mu_a \]

\[T_a(t) = \sum_{s=1}^{t} 1(A_s = a) \]
Regret decomposition

$$\mathcal{R}_n = n\mu^* - \mathbb{E} \left[\sum_{t=1}^{n} R_t \right]$$

$$= \mathbb{E} \left[\sum_{t=1}^{n} (\mu^* - R_t) \right]$$

$$\Delta_a = \mu^* - \mu_a$$

$$T_a(t) = \sum_{s=1}^{t} \mathbb{1}(A_s = a)$$
Regret decomposition

\[R_n = n\mu^* - \mathbb{E} \left[\sum_{t=1}^{n} R_t \right] \]

\[= \mathbb{E} \left[\sum_{t=1}^{n} (\mu^* - R_t) \right] \]

\[= \mathbb{E} \left[\sum_{t=1}^{n} \Delta A_t \right] \]
Regret decomposition

\[R_n = n\mu^* - \mathbb{E} \left[\sum_{t=1}^{n} R_t \right] \]

\[= \mathbb{E} \left[\sum_{t=1}^{n} (\mu^* - R_t) \right] \]

\[= \mathbb{E} \left[\sum_{t=1}^{n} \Delta A_t \right] \]

\[= \mathbb{E} \left[\sum_{t=1}^{n} \sum_{a \in A} 1(A_t = a) \Delta_a \right] \]

\[\Delta_a = \mu^* - \mu_a \]

\[T_a(t) = \sum_{s=1}^{t} 1(A_s = a) \]
Regret decomposition

\[\mathcal{R}_n = n \mu^* - \mathbb{E} \left[\sum_{t=1}^{n} R_t \right] \]

\[= \mathbb{E} \left[\sum_{t=1}^{n} (\mu^* - R_t) \right] \]

\[= \mathbb{E} \left[\sum_{t=1}^{n} \Delta A_t \right] \]

\[= \mathbb{E} \left[\sum_{t=1}^{n} \sum_{a \in A} 1(A_t = a) \Delta_a \right] \]

\[= \sum_{a \in A} \Delta_a \mathbb{E}[T_a(n)] \]

\[\Delta_a = \mu^* - \mu_a \]

\[T_a(t) = \sum_{s=1}^{t} 1(A_s = a) \]
Assume for all t that

$$\hat{\mu}_a^*(t - 1) + \sqrt{\frac{2 \log(1/\delta)}{T_a^*(t - 1)}} \geq \mu^*$$

$$\mu_a + \sqrt{\frac{2 \log(1/\delta)}{T_a(t - 1)}} \geq \hat{\mu}_a(t - 1)$$
Assume for all t that

$$\hat{\mu}_a^*(t - 1) + \sqrt{\frac{2 \log(1/\delta)}{T_a^*(t - 1)}} \geq \mu^*$$

$$\mu_a + \sqrt{\frac{2 \log(1/\delta)}{T_a(t - 1)}} \geq \hat{\mu}_a(t - 1)$$

Now suppose that $A_t = a$ in round t

$$\mu_a + 2\sqrt{\frac{2 \log(1/\delta)}{T_a(t - 1)}} \geq \hat{\mu}_a(t - 1) + \sqrt{\frac{2 \log(1/\delta)}{T_a(t - 1)}}$$
Assume for all t that

\[\hat{\mu}_{a^*}(t - 1) + \sqrt{\frac{2 \log(1/\delta)}{T_{a^*}(t - 1)}} \geq \mu^* \]

Now suppose that $A_t = a$ in round t

\[\mu_a + 2 \sqrt{\frac{2 \log(1/\delta)}{T_a(t - 1)}} \geq \hat{\mu}_a(t - 1) + \sqrt{\frac{2 \log(1/\delta)}{T_a(t - 1)}} \]

\[\geq \hat{\mu}_{a^*}(t - 1) + \sqrt{\frac{2 \log(1/\delta)}{T_{a^*}(t - 1)}} \geq \mu_a^* \]
Assume for all t that

$$\hat{\mu}_{a^*}(t - 1) + \sqrt{\frac{2 \log(1/\delta)}{T_{a^*}(t - 1)}} \geq \mu^*$$

$$\mu_a + \sqrt{\frac{2 \log(1/\delta)}{T_a(t - 1)}} \geq \hat{\mu}_a(t - 1)$$

Now suppose that $A_t = a$ in round t

$$\mu_a + 2\sqrt{\frac{2 \log(1/\delta)}{T_a(t - 1)}} \geq \hat{\mu}_a(t - 1) + \sqrt{\frac{2 \log(1/\delta)}{T_a(t - 1)}}$$

$$\geq \hat{\mu}_{a^*}(t - 1) + \sqrt{\frac{2 \log(1/\delta)}{T_{a^*}(t - 1)}} \geq \mu_{a^*}$$

Hence

$$T_a(t - 1) \leq \frac{8 \log(1/\delta)}{\Delta_a^2} \quad \Longrightarrow \quad T_a(n) \leq 1 + \frac{8 \log(1/\delta)}{\Delta_a^2}$$
Let $\hat{\mu}_{a,s}$ be the empirical mean of arm a after s plays.

The concentration theorem shows that

$$\mathbb{P}\left(\hat{\mu}_{a,s} \geq \mu_a + \sqrt{\frac{2 \log(1/\delta)}{s}}\right) \leq \delta$$

Combining with a union bound,

$$\mathbb{P}\left(\text{exists } s \leq n : \hat{\mu}_{a,s} \geq \mu_a + \sqrt{\frac{2 \log(1/\delta)}{s}}\right) \leq n\delta$$
Putting it together

\[R_n = \sum_{a \in A} \Delta_a \mathbb{E}[T_a(n)] \leq \sum_{a \in A : \Delta_a > 0} \Delta_a \left(2\delta n^2 + 1 + \frac{8 \log(1/\delta)}{\Delta_a^2} \right) \leq \sum_{a \in A : \Delta_a > 0} 3\Delta_a + \frac{16 \log(n)}{\Delta_a} \]
Sanity checking our results

We have proven the regret of UCB is at most

$$\mathcal{R}_n \leq \sum_{a \in A: \Delta_a > 0} 3\Delta_a + \frac{16 \log(n)}{\Delta_a}$$

Is this good?
\(R_n = \sum_{a \in A} \Delta_a \mathbb{E}[T_a(n)] \)
Problem independent bound

\[R_n = \sum_{a \in A} \Delta_a \mathbb{E}[T_a(n)] \]

\[= \sum_{a \in A: \Delta_a \leq \Delta} \Delta_a \mathbb{E}[T_a(n)] + \sum_{a \in A: \Delta_a > \Delta} \Delta_a \mathbb{E}[T_a(n)] \]
Problem independent bound

\[R_n = \sum_{a \in A} \Delta_a \mathbb{E}[T_a(n)] \]

\[= \sum_{a \in A : \Delta_a \leq \Delta} \Delta_a \mathbb{E}[T_a(n)] + \sum_{a \in A : \Delta_a > \Delta} \Delta_a \mathbb{E}[T_a(n)] \]

\[\leq n \Delta + \sum_{a \in A : \Delta_a > \Delta} 3 \Delta_a + \frac{16 \log(n)}{\Delta_a} \]
Problem independent bound

\[\mathcal{R}_n = \sum_{a \in A} \Delta_a \mathbb{E}[T_a(n)] \]

\[= \sum_{a \in A: \Delta_a \leq \Delta} \Delta_a \mathbb{E}[T_a(n)] + \sum_{a \in A: \Delta_a > \Delta} \Delta_a \mathbb{E}[T_a(n)] \]

\[\leq n\Delta + \sum_{a \in A: \Delta_a > \Delta} 3\Delta_a + \frac{16 \log(n)}{\Delta_a} \]

\[\leq n\Delta + \frac{16K \log(n)}{\Delta} + 3 \sum_{a \in A} \Delta_a \]
Problem independent bound

\[R_n = \sum_{a \in A} \Delta_a \mathbb{E}[T_a(n)] \]

\[= \sum_{a \in A: \Delta_a \leq \Delta} \Delta_a \mathbb{E}[T_a(n)] + \sum_{a \in A: \Delta_a > \Delta} \Delta_a \mathbb{E}[T_a(n)] \]

\[\leq n \Delta + \sum_{a \in A: \Delta_a > \Delta} 3 \Delta_a + \frac{16 \log(n)}{\Delta_a} \]

\[\leq n \Delta + \frac{16K \log(n)}{\Delta} + 3 \sum_{a \in A} \Delta_a \]

\[\leq 8 \sqrt{nk \log(n)} + 3 \sum_{a \in A} \Delta_a \leq 8 \sqrt{nk \log(n)} + 3k \]
There is a lot more..

- Improving constants
- Different noise models
- Linear bandits: $\mathcal{A} \subset \mathbb{R}^d$ and $\mu_a = \langle \mu, a \rangle$
- Other kinds of structure: $\mathcal{A} \subset \mathbb{R}^d$ and $\mu_a = f(a)$ with f ‘smooth’
- Changing action sets
- Delayed rewards
- Non-stationary bandits
- Best arm identification
- Adversarial model

Lots of fun still to be had, but this is an RL workshop
Exploration in reinforcement learning ("We want states")
Episodic MDPs

An episodic MDP is a tuple \((S, A, P, H, r, \mu)\)

- \(S\) is a finite set of states
- \(A\) is a finite set of actions
- \(P\) is the transition kernel
- \(H\) is the episode length
- \(r : S \times A \rightarrow [0, 1]\) is the reward function
- \(\mu\) is the distribution of the initial state

Assumption Only \(P\) is unknown
An episodic MDP is a tuple \((S, A, P, H, r, \mu)\)

- \(S\) is a finite set of states
- \(A\) is a finite set of actions
- \(P\) is the transition kernel
- \(H\) is the episode length
- \(r : S \times A \rightarrow [0, 1]\) is the reward function
- \(\mu\) is the distribution of the initial state

Assumption Only \(P\) is unknown
$S = \{1, 2, 3\}$ and $H = 4$
A policy π is a function from histories to actions.

The value of a policy π is

$$v^\pi = \mathbb{E} \left[\sum_{h=1}^{H} r(S_h, A_h) \right]$$
Dynamic programming

Think of \(P(s, a) = (P(s, a, 1), \ldots, P(s, a, |S|)) \)

The optimal value function is defined inductively

\[
\begin{align*}
\nu_0(s) &= 0 \\
q_h(s, a) &= r(s, a) + \langle P(s, a), \nu_{h-1} \rangle \\
\nu_h(s) &= \max_{a \in A} q_h(s, a) \\
\pi_h(s) &= \arg\max_{a \in A} q_h(s, a)
\end{align*}
\]

\(P = \{ x \in [0, 1]^{|S|} : \|x\|_1 = 1 \} \)
Learning and regret

In each episode the learner chooses a policy π^t

Observes a trajectory $S^t_1, A^t_1, S^t_2, A^t_2, \ldots, S^t_H, A^t_H$

Regret over n episodes is

$$R_n = \sum_{t=1}^{n} R^{(t)} = \mathbb{E} \left[\sum_{t=1}^{n} \langle \mu, \nu^*_H - \nu^{\pi^t}_H \rangle \right]$$
Optimism for RL

Same idea!

Estimate the things you don’t know (transitions)

Build **confidence intervals** around the unknowns

Act as if the world is as **nice as plausible**
The empirical transitions are given by

\[T_{s,a}(t) = \# \text{ plays action } a \text{ in state } s \]

\[\hat{P}_t(s, a, s') = \# \text{ prop. transitions to } s' \text{ from } s \text{ taking } a \]
Estimation and confidence intervals

The empirical transitions are given by

\[T_{s,a}(t) = \text{# plays action } a \text{ in state } s \]

\[\hat{P}_t(s, a, s') = \text{# prop. transitions to } s' \text{ from } s \text{ taking } a \]

The confidence set is \(\ell_1 \)-ball about vector \(\hat{P}_t(s, a) \)

\[C_t(s, a) = \left\{ p \in \mathcal{P} : \| p - \hat{P}_t(s, a) \|_1 \leq \sqrt{\frac{2|S| \log(2/\delta)}{T_{s,a}(t)}} \right\} \]

\[\mathcal{P} = \{ x \in [0, 1]^{|S|} : \| x \|_1 = 1 \} \]
Optimistic dynamic programming

At the start of phase t,

\[
\tilde{v}_0(s) = 0
\]

\[
\tilde{q}_h(s, a) = r(s, a) + \max_{p \in C_{t-1}(s,a)} \langle p, \tilde{v}_{h-1} \rangle
\]

\[
\tilde{v}_h(s) = \max_{a \in A} \tilde{q}_h(s, a)
\]

\[
\pi^t_h(s) = \arg\max_{a \in A} \tilde{q}_h(s, a)
\]

\[
\tilde{P}_h(s) = \arg\max_{p \in C_{t-1}(s,\pi_h(s))} \langle p, \tilde{v}_{h-1} \rangle
\]
UCB for reinforcement learning

Three steps in each episode

Step 1 Compute empirical estimate of transitions and confidence intervals

Step 2 Use optimistic dynamic programming to find a policy

Step 3 Implement policy for entire episode

Algorithm is called Upper Confidence Bounds for Reinforcement Learning (UCRL)
Analysing UCRL

Use optimism

With high probability $P(s, a) \in C_t(s, a)$ for all t and s, a
Analysing UCRL

Use optimism

With high probability $P(s, a) \in C_t(s, a)$ for all t and s, a

Assuming this holds, then

$$\langle \mu, v_H - v_H^\pi \rangle = \langle \mu, v_H \rangle - \langle \mu, v_H^\pi \rangle$$

$$\leq \langle \mu, \tilde{v}_H^\pi \rangle - \langle \mu, v_H^\pi \rangle$$

$$= \langle \mu, \tilde{v}_H^\pi - v_H^\pi \rangle$$

Useful because it’s much easier to compare values under the same policy
Value differences

Decompose the value difference:

\[\langle \mu, \tilde{v}^\pi_H - v^\pi_H \rangle = \mathbb{E} \left[\sum_{h=1}^{H} \langle \tilde{P}^t_{H-h+1}(S^t_h, A^t_h) - P(S^t_h, A^t_h), \tilde{v}^\pi_{H-h} \rangle \right] \]

We might look at the proof later.
Applying Hölder’s inequality

\[\mathcal{R}(t) \lesssim \mathbb{E} \left[\sum_{h=1}^{H} \langle \tilde{P}_{H-h+1}(S_h, A_h) - P(S_h, A_h), \tilde{v}_{H-h}^\pi \rangle \right] \]

Hölder’s inequality: \(\langle x, y \rangle \leq \|x\|_1 \|y\|_\infty \)
Applying Hölder’s inequality

\[\mathcal{R}^{(t)} \leq \mathbb{E} \left[\sum_{h=1}^{H} \langle \tilde{P}_{H-h+1}(S_h, A_h) - P(S_h, A_h), \tilde{v}^\pi_{H-h} \rangle \right] \]

\[\leq \mathbb{E} \left[\sum_{h=1}^{H} \left\| \tilde{P}_{H-h+1}(S_h, A_h) - P(S_h, A_h) \right\|_1 \left\| \tilde{v}^\pi_{H-h} \right\|_\infty \right] \]

Hölder’s inequality: \(\langle x, y \rangle \leq \|x\|_1 \|y\|_\infty \)
Applying Hölder’s inequality

\[R(t) \lesssim \mathbb{E} \left[\sum_{h=1}^{H} \left\langle \tilde{P}_{H-h+1}(S_h, A_h) - P(S_h, A_h), \tilde{\nu}_{H-h}^\pi \right\rangle \right] \]

\[\leq \mathbb{E} \left[\sum_{h=1}^{H} \left\| \tilde{P}_{H-h+1}(S_h, A_h) - P(S_h, A_h) \right\|_1 \left\| \tilde{\nu}_{H-h}^\pi \right\|_\infty \right] \]

\[\lesssim H \mathbb{E} \left[\sum_{h=1}^{H} \sqrt{|S| \log(1/\delta) \over T_{S_h, A_h}(t-1)} \right] \]

Hölder’s inequality: \[\langle x, y \rangle \leq \| x \|_1 \| y \|_\infty \]
Applying Hölder’s inequality

\[R^{(t)} \lesssim \mathbb{E} \left[\sum_{h=1}^{H} \langle \tilde{P}_{H-h+1}(S_h, A_h) - P(S_h, A_h), \tilde{v}_{H-h}^{\pi} \rangle \right] \]

\[\lesssim \mathbb{E} \left[\sum_{h=1}^{H} \left\| \tilde{P}_{H-h+1}(S_h, A_h) - P(S_h, A_h) \right\|_1 \left\| \tilde{v}_{H-h}^{\pi} \right\|_{\infty} \right] \]

\[\lesssim H \mathbb{E} \left[\sum_{h=1}^{H} \sqrt{|S| \log(1/\delta)} \right] \]

\[\lesssim H \mathbb{E} \left[\sum_{s,a} T_{s,a}(t-1, t) \sqrt{\frac{|S| \log(1/\delta)}{T_{s,a}(t-1)}} \right] \]

Hölder’s inequality: \(\langle x, y \rangle \leq \|x\|_1 \|y\|_{\infty} \)
\[
\sum_{t=1}^{n} R^{(t)} \leq H E \left[\sum_{s,a} \sum_{t=1}^{n} T_{s,a}(t - 1, t) \sqrt{\frac{|S| \log(1/\delta)}{T_{s,a}(t - 1)}} \right]
\]

\[
\leq H E \left[\sum_{s,a} \sqrt{|S| T_{s,a}(n) \log(1/\delta)} \right]
\]

\[
\leq H E \left[\sqrt{|S|^2 |A|} \sum_{s,a} T_{s,a}(n) \log(1/\delta) \right]
\]

\[
= H |S| \sqrt{|A| H n \log(1/\delta)}
\]
At last...

With ‘high probability’ the regret of UCRL is

$$\mathcal{R}_n = O \left(|S|H\sqrt{n|A|\log(1/\delta)}\right)$$

Lower bound Any algorithm has regret at least

$$\mathcal{R}_n = \Omega \left(H\sqrt{n|A||S|\log(1/\delta)}\right)$$
Takeaways

- A little concentration of measure
- Optimism as a principle for algorithm design
- Optimism for bandits (UCB) and MDPs (UCRL)
Let us reflect for a moment
Let us reflect for a moment

How big is $H \sqrt{n|A||S| \log(1/\delta)}$?
Let us reflect for a moment

How big is \(H \sqrt{n |A||S| \log(1/\delta)} \)?

\(|S| = 2^{20}\)
Let us reflect for a moment

How big is $H \sqrt{n |A| |S|} \log(1/\delta)$?

$|S| = 2^{20}$

Oh 😞
Big challenges

• Exploring in large unstructured MDPs is hopeless
• Combining exploration with function approximation
• Bringing in bias
• Optimism is not universal
• All known exploration principles are either (a) known to be suboptimal or (b) hopelessly intractible
• Model free exploration

Great time to be in RL (theory and practice!)
“Bandit Algorithms” book

Joint work with Csaba Szepesvári

Free online at http://banditalgs.com
Reading

- UCRL. Auer et al. Near-optimal Regret Bounds for Reinforcement Learning, 2010

Useful keywords Posterior sampling, information directed sampling, Bellman rank, randomized value functions. Preface with ‘deep’ for more buzz
Categorical concentration

Let X, X_1, X_2, \ldots, X_n be independent and identically distributed with $X_t \in [k]$

Let $p_i = \mathbb{P}(X = i)$ and $\hat{p}_i = \frac{1}{n} \sum_{t=1}^{n} 1(X_t = i)$

You can have fun proving that

$$\mathbb{P}\left(\|p - \hat{p}\|_1 \geq \sqrt{\frac{2k \log(2/\delta)}{n}} \right) \leq \delta$$