Connections between random Boolean networks and their annealed model

Steffen Schober1 Georg Schmidt2

1Institute of Telecommunications and Applied Information Theory
Ulm University, Germany

2Ubidyne GmbH, Ulm, Germany

European Conference on Complex Systems
October 1-5, 2007
Outline

1. Introduction
 - Boolean networks
 - Random Boolean networks
 - Annealed and quenched model

2. Main Part
 - Sensitivity of Boolean functions
 - Analysis of the quenched model
 - Analysis of the annealed model

3. Summary
A Boolean network consists of N interconnected nodes i each capable of storing a binary value.

Each node i has K input edges j_{i1}, \ldots, j_{iK}.

To each node a Boolean function f_i is assigned.
Define $s_i(t)$ as the value stored by i at time t.

Then:

$$s_i(t + 1) = f(s_i_1(t), \ldots, s_i_K(t))$$
NK networks: Random Boolean networks with N nodes, where:

- for each node a Boolean function is chosen among all equally likely functions with K arguments,
- for each function the K arguments are chosen among $\binom{N}{K}$ equally likely possibilities,
- finally a random initial state is chosen.

By numerical simulations S. Kauffman found that if $K \leq 2$, the networks show ordered behaviour:

- Large proportion of weak nodes.
- Large proportion of frozen nodes.
- Small attractor cycles.

Contrary if $K > 2$ the networks are disordered or chaotic.
NK networks

NK networks: Random Boolean networks with N nodes, where:

- for each node a Boolean function is chosen among all equally likely functions with K arguments,
- for each function the K arguments are chosen among $\binom{N}{K}$ equally likely possibilities,
- finally a random initial state is chosen.

By numerical simulations S. Kauffman found that if $K \leq 2$, the networks show ordered behaviour:

- Large proportion of weak nodes.
- Large proportion of frozen nodes.
- Small attractor cycles.

Contrary if $K > 2$ the networks are disordered or chaotic.
Here we consider the ensemble RBN\((K, P)\):

- for each node a Boolean function \(f\) with \(K\) arguments is chosen as follows: each of the \(2^K\) positions in the truth table of \(f\) is set to 1 with probability \(P\).
- for each function the \(K\) arguments are chosen among \({N \choose K}\) equally likely possibilities,
- finally a random initial state is chosen.
[Derrida & Pomeau 1986] introduced the *annealed model*. In contrast to the classical model (the so called *quenched model*) the functions and connections are chosen at random at each time step.
[Derrida & Pomeau 1986] introduced the *annealed model*. In contrast to the classical model (the so called *quenched model*) the functions and connections are chosen at random at each time step.

Theorem

Ordered behaviour, which means

\[
\frac{\mathbb{E}(d_H(s_1(t), s_2(t)))}{N} \to 0,
\]

if and only if

\[
2KP(1 - P) \leq 1.
\]
Consider a network (with N nodes) with an arbitrary state.

- A node G is t-weak if a perturbation of G vanishes in t steps.
Consider a network (with N nodes) with an arbitrary state.

- A node G is t-weak if a perturbation of G vanishes in t steps.

Theorem

Ordered behaviour, which means

\[
\lim_{N \to \infty} \Pr(G \text{ is } \alpha \log N\text{-weak}) = 1,
\]

if and only if

\[
2KP(1 - P) \leq 1.
\]

(α is a constant depending on K only)
Motivation

Question

- What is the connection between the two models?
Definition

- The \(l \)-sensitivity \(s^l_f(w) \) of a function \(f \) with argument \(w \in \mathbb{F}^K_2 \) is the number of vectors \(x \) in Hamming distance \(l \) to \(w \), for which \(f(w) \neq f(x) \).
- The average \(l \)-sensitivity \(s^l_f \) is the average of \(s^l_f(w) \) of all \(w \).
Definition

- The *l*-sensitivity $s^l_f(w)$ of a function f with argument $w \in \mathbb{F}_2^K$ is the number of vectors x in Hamming distance l to w, for which $f(w) \neq f(x)$.
- The *average l*-sensitivity s^l_f is the average of $s^l_f(w)$ of all w.

Example:

$$f((w_1, w_2, w_3)) = w_1 \oplus w_2 \oplus w_3$$

Argument space of f, $f = 1$ marked red:
Definition

- The l-sensitivity $s^l_f(w)$ of a function f with argument $w \in \mathbb{F}_2^K$ is the number of vectors x in Hamming distance l to w, for which $f(w) \neq f(x)$.
- The average l-sensitivity s^l_f is the average of $s^l_f(w)$ of all w.

Example:

$$f((w_1, w_2, w_3)) = w_1 \oplus w_2 \oplus w_3$$

for all w:

$$s^1_f(w) = 3 \quad \text{and} \quad s^2_f(w) = 0$$
Suppose that Boolean functions are chosen at random. The probability of choosing a function f is given by p_f: The expectation of the l-sensitivity is given by

$$E\left(s^l_f(w)\right) = \sum_f p_f s^l_f(w).$$
Expectation of l-Sensitivity for random function

Suppose that Boolean functions are chosen at random. The probability of choosing a function f is given by p_f: The expectation of the l-sensitivity is given by

$$\mathbb{E} \left(s^l_f(w) \right) = \sum_f p_f s^l_f(w).$$

Similar

$$\mathbb{E} \left(s^l_f \right) = \sum_f p_f s^l_f.$$
Suppose that Boolean functions are chosen at random. The probability of choosing a function f is given by p_f: The expectation of the l-sensitivity is given by

$$
\mathbb{E}\left(s^l_f(w)\right) = \sum_f p_f s^l_f(w).
$$

Similar

$$
\mathbb{E}\left(s^l_f\right) = \sum_f p_f s^l_f.
$$

For RBN(K, P) it turns out that

Lemma

for all w:

$$
\mathbb{E}\left(s^l_f(w)\right) = \text{const.} = \mathbb{E}\left(s^l_f\right).
$$
Suppose that Boolean functions are chosen at random. The probability of choosing a function f is given by p_f: The expectation of the l-sensitivity is given by

$$\mathbb{E}\left(s_f^l(w)\right) = \sum_f p_f s_f^l(w).$$

Similar

$$\mathbb{E}\left(s_f^l\right) = \sum_f p_f s_f^l.$$

For RBN(K, P) it turns out that

Lemma

$$\mathbb{E}\left(s_f^l\right) = \frac{{K \choose l}}{K} \mathbb{E}(s_f^1).$$
Lynchs order parameter

Suppose
- the probability for a function f is given by p_f and
- the *mean activity* is independent of time and given by a.

\[\lambda = \sum f \cdot p_f \sum w \in F K_2^s f(w) a \cdot H(w) (1 - a) K_i - w H(w), \]

Schober et al RBNs and their annealed model 11
Suppose

- the probability for a function \(f \) is given by \(p_f \) and
- the *mean activity* is independent of time and given by \(a \).

Definition (Lynch)

\[
\lambda = \sum_f p_f \sum_{w \in \mathbb{F}_2^K} s_f(w) a^{w_H(w)} (1 - a)^{K_i - w_H(w)},
\]
Suppose
- the probability for a function f is given by p_f and
- the mean activity is independent of time and given by a.

Definition (Lynch)

$$\lambda = \sum_f p_f \sum_{w \in F_2^K} s_f(w) a^{w_H(w)} (1 - a)^{K_i - w_H(w)}.$$

in general

Theorem (Lynch)

Ordered behaviour if and only if

$$\lambda \leq 1.$$
Suppose
- the probability for a function f is given by p_f and
- the mean activity is independent of time and given by a.

Definition (Lynch)

$$\lambda = \sum_{f} p_f \sum_{w \in \mathbb{F}_2^K} s_f(w) a^{w_H(w)} (1 - a)^{K_i - w_H(w)},$$

for $\text{RBN}(K, p)$:

Theorem

$$\lambda = \mathbb{E}(s_f^1)$$

hence ordered behaviour if and only if

$$\mathbb{E}(s_f^1) \leq 1.$$
Consider two instances of the same random network (with N nodes) starting from two different initial states (s_1, s_2). Define the fractional overlap $a(t) = 1 - \frac{\mathbb{E}(d_H(s_1(t), s_2(t)))}{N}$.
Consider two instances of the same random network (with N nodes) starting from two different initial states (s_1, s_2). Define the fractional overlap $a(t) = 1 - \frac{\mathbb{E}(d_H(s_1(t), s_2(t)))}{N}$.

At time t: Define a set of nodes A_t which store the same value in both instances (marked as yellow below).

Yellow nodes: same value in both instances
Red nodes: different values in both instances
Consider two instances of the same random network (with N nodes) starting from two different initial states (s_1, s_2). Define the fractional overlap $a(t) = 1 - \frac{\mathbb{E}(d_H(s_1(t), s_2(t)))}{N}$.

At time t: Define a set of nodes A_t which store the same value in both instances (marked as yellow below).

Next time step: there are nodes (blue) that receive their input only from A_t. We expect $Na(t)^K$ blue nodes and $N(1 - a(t)^K)$ other nodes at time $t + 1$, the latter having probability P_d of being different. Therefore:

$$a(t + 1) = a(t)^K + (1 - P_d)(1 - a(t)^K).$$
Suppose that \(s_1 \) and \(s_2 \) are randomly chosen but different and \(f \) is a random function.

\[
P_d = Pr (f(s_1) \neq f(s_2) \mid s_1 \neq s_2)
\]
Suppose that \(s_1 \) and \(s_2 \) are randomly chosen but different and \(f \) is a random function.

\[
P_d = \Pr(f(s_1) \neq f(s_2) \mid s_1 \neq s_2)
\]

For \(\text{RBN}(K, P) \) it turns out that

\[
P_d = \frac{\mathbb{E}(s^1_f)}{K}.
\]
Therefore $a(t)$ evolves according a one-dimensional map

$$a(t + 1) = A(a(t))$$

where

$$A(x) = 1 + P_d(x^K - 1) = 1 + \mathbb{E}(s_f^1)(x^K - 1).$$
Therefore \(a(t) \) evolves according a one-dimensional map

\[
a(t + 1) = A(a(t))
\]

where

\[
A(x) = 1 + P_d(x^K - 1) = 1 + \mathbb{E}(s^1_f)(x^K - 1).
\]

Theorem

Stable fixed point \(x_0 = 1 \) (*total overlap, hence ordered behaviour*) if and only if

\[
\mathbb{E}(s^1_f) \leq 1.
\]
Summery and comments

Due to the simple form of the expectation of the l-sensitivity:

- For $\text{RBN}(K, P)$ the phase of both models, the annealed and the quenched, is determined by the expectation of the average sensitivity (order 1).
- This is also true for other ensembles (see paper).
Due to the simple form of the expectation of the l-sensitivity:

- For $\text{RBN}(K, P)$ the phase of both models, the annealed and the quenched, is determined by the expectation of the average sensitivity (order 1).
- This is also true for other ensembles (see paper).

Note:
It can be shown, that similar results hold, if the probability of a function is only dependent on the number of 1 in the truth table (not yet published).
Thank you

for your attention!