A journey with bacteria: from waste to nematic colloids & gels & to smart windows

Ivan Smalyukh
CU-Boulder
Windows & energy: not a simple problem

- 20% building energy is lost through windows
- $500-$1000 loss per household each year
- Globally, comparable to 50% of energy from coal-based electric power plants

http://www.blindalley.com
Thermos & a triple-silver, triple-pane solution

→ Heat exchange: emission & thermal conduction
→ Silver coating to reflect radiation;
→ Vacuum between walls to minimize the thermal conduction;

→ What if all windows in US were triple-pane, vacuum, with triple-silver coatings?
→ Carbon dioxide emission reduction by about 70 millions tons per year [1]

• Very expensive,
• Tinted (not fully transparent)
• Hard to install, often structurally incompatible
• Do not fully solve the problem…
What would be ideal?

→2 problems – thermal conduction (~60%) & IR emission (~40%)

Replace or retrofit glass with a material that has:
→Perfect thermal insulation
→Perfect visible transparency
→Infrared reflectivity, ideally tunable to be different depending on exterior T
→Solar heating in IR good in winter but not during summer

Ideal spectra for summer
Ideal spectra for winter

Such materials do not exist...
Aerogels from Liquid crystals of cellulose?

→ Aerogels have low thermal conduction;
→ Made from disordered networks of silica colloidal nanoparticles (<1% solid);
→ Non-transparent in visible;
→ Emissivity in IR barely altered
Magic (statistical physics) of self-assembly

- Cellulose nanorods (4-6 nm diameter, 2-3 microns long)
- Free energy is minimized in the LC phase
Properties of 6.5-inch cellulose aerogels so far

As a thermal barrier on cold/hot surfaces

Note: transmission better than that of 92% of glass due to lower effective refractive index

<table>
<thead>
<tr>
<th>Aerogel Parameters</th>
<th>Measured value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible Light Transmission</td>
<td>96.6%</td>
</tr>
<tr>
<td>Haze</td>
<td>2.8%</td>
</tr>
<tr>
<td>Color Rendering Index</td>
<td>0.90</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>11.5-13.5 mW/K/m</td>
</tr>
<tr>
<td>U value</td>
<td>~0.6 BTU/sf/F/hr</td>
</tr>
</tbody>
</table>
Haze: physical origins

→ haze is a function of particle size r_0 relative to a wavelength λ of light
→ shorter (blue) wavelengths are scattered more & longer (red/infrared) less

$r_0 << \lambda \rightarrow$ Rayleigh scattering

Rayleigh scattering is strongly color selective $I \sim \lambda^{-4}$

$r_0 \approx \lambda \rightarrow$ Mie scattering

Hazy day
Haze & Scattering in Cellulose Aerogel

→ Scattering due to imperfections of the surface or nanoporous network
→ Macropores (≥100 nm) are responsible for Mie scattering
→ Nanopores (<50 nm) are responsible for Rayleigh scattering

SEM image of aligned aerogel

aerogel consist of fibrous skeletons and pores

→ Strategy for reducing haze:
→ Very thin 4nm nanofibers and <50 nm nanopores
Experimental Haze Characterization

ASTM D1003 is the accepted standard for haze measurements.
Bacterial workforce to make it inexpensive

→ 5×10^{30} bacteria on Earth

→ Acetobacter xylinus
→ Consume food/beer industry waste
→ Produce cellulose nanorods

Beer “wort” from local breweries

Nanocelulose production by bacteria

- Autoclave to sterilize, introduce *Acetobacter xylinus* and wait for cellulose growth!
Large Scale Bacterial Cellulose Growth

Kilograms of nano-cellulose in the lab produced with ease!
Production of aerogel by bacteria

Dark field microscopy of *a. hansenii* at work

Schematic of *acetobacter* producing cellulose

Cellulose microfibrils stick together via hydrogen bonding to make cellulose fibers

- Thick cellulose fibers are one of the sources for strong scattering and haze in aerogels
- Preventing hydrogen bonding between microfibrils can result in producing of cellulose fibers of smaller diameters

A. Xylinum at work

Brown et al., PNAS 73, 4565 (1976)
Production of aerogel by bacteria

- Sodium carboxymethyl cellulose (~1.5%) is added to a culture solution to prevent hydrogen bonding between cellulose fibrils.

A. xylinum bacteria with a thick cellulose fiber before adding SCC

A. xylinum bacteria after adding SCC

Thin cellulose fibrils are not visible
Bacterial Cellulose Aerogel

Acetobacter Hansenii
- About 1g/L/week
- Highly pure
- Opaque, high concentration pellicles

Minimally processed cellulose aerogel directly made from a cellulose bacterial biofilm pellicle and grown by *Acetobacter hasenii*

- Cheap, Large Scale Production
- Green production
Bacterial Cellulose Aerogel

- Lower the fabrication cost;
- Green fabrication process;
- Selected Finalist of NASA iTech.

Hydrogel

Alcogel

Aerogel

Sodium carboxymethyl cellulose

Cellulose microfibers

Cellulose II

Cellulose synthase

Cysteamin monomers

Lipopolysaccharide envelope

1 cm

1 cm

75°C

55°C
CNF aerogel via polysiloxane

Principle:

Functionalized CNFs + Polysiloxane precursor

Liquid crystalline CNF aerogel obtained by polysiloxane crosslinking
From fluid-like to solid liquid crystal film

Cellulose nanorods

Negatively stained TEM using phosphotungstic acid

→ Ordered colloidal LC -> hydrogels -> organogels -> aerogels...

→ Liquid crystal phase at <.5% by vol.
→ CNF gels via polysiloxane crosslinking
→ Flexible transparent aerogel
Manufacture of cellulose aerogels

1. Raw cellulose (Bacterial cellulose)
2. Nanofibers (TEMPO-mediated oxidation)
3. Surface modification (quaternary amine)
4. Critical point drying
5. Polysiloxane
6. Acetic acid
7. Surfactant
8. Urea
9. Hydrogel
10. Alcogel
11. Aerogel
12. Age at 60°C for 3 days
13. Wash with water and solvent exchange to isopropanol
14. Ambient drying

15. Raw cellulose (Bacterial cellulose)
16. Nanofibers (TEMPO-mediated oxidation)
17. Polysiloxane
18. Nitric acid
19. Surfactant
20. TMAOH
21. Hydrogel
22. Alcogel
23. Organogel
24. Aerogel
25. Age at 80°C for 3 days
26. Wash with water, methanol and solvent exchange to isopropanol
27. Solvent exchange to heptane
28. Ambient drying
Liquid crystalline order within aerogels

→ Birefringent because of the ordered internal structure of nanofibers
→ Liquid crystal aerogel with the “frozen” order
Mechanical Robustness, Flexibility & Hydrophobicity

Mechanical robustness & flexibility

6.5” (diagonal), 2.5 mm thick

Hydrophobicity
Fabrication of aerogel using sustainably-derived cellulose

Cellulose aerogel from bacterial cellulose produced from beer wort waste

→Note: transmission better than that of 92% of glass!

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Measured value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible Light Transmission</td>
<td>96.6%</td>
</tr>
<tr>
<td>Haze</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Parameters	Measured value
Visible Light Transmission | 96.6% |
Haze | 2.8% |
Thermal conductivity of aerogels

Thermal conductivity k measures the heat conducting capability of a material:

$$Q = -k A \Delta T$$

where Q is the heat flow, A is the cross-sectional area, and ΔT is the temperature difference between the hot and cold sides.

$$k = \frac{QL}{A \Delta T}$$

The dimension of k is W/Km.

Ultra-low thermal conductivity

→ Measurement challenge: laser flash approach – conductivity too low to be accurate

http://thermalanalysislabs.com

→ High-accuracy Heat Flow Meters (Japan, Canada, USA)
→ For specially prepared samples to further boost accuracy
→ Comparative/reference high-accuracy measurement of thermal conductivity

→ Thermal conductivity of non-transparent aerogels <10mW/(km) achieved in past
→ We achieved & measured 11.5 mW/(km) in transparent aerogels!
Methods for thermal conductivity measurements

- **Guarded Hot Plate (GHP)** method is the most optimal for measurements of small k!

- **Transient Plane Source**: k-range (W/mK) 0-2
- **Modified Transient Plane Source**: k-range (W/mK) 0-100
- **Laser Flash Diffusivity**: k-range (W/mK) 0-500

References:

Thermal conductivity measurements: Guarded Hot Plate method

- Guarded Hot Plate method using a heat flow meter HFM 436: Kyoto (Japan)

 - Requires large samples
 - High sensitivity to small k!!!

Measurement of thermal conductivity: comparative/reference method

Knowing the thermal conductivity k_2 of the reference material one can find the thermal conductivity of the sample.

\[Q_1 = k_1 \frac{A_1}{L_1} \Delta T_1 \quad Q_2 = k_2 \frac{A_2}{L_2} \Delta T_2 \]

\[Q_1 = Q_2 \]

\[k_1 = k_2 \frac{A_2}{A_1} \frac{\Delta T_2}{\Delta T_1} \frac{L_1}{L_2} \]

Measurement of U-value: comparative/reference method

U-value measures the rate of heat transfer

$$Q = UA\Delta T$$

$$U = 1/R$$

The lower U-value, the better ability to resist heat conduction

$$[U] = \left[\frac{W}{Km^2} \right] = \left[\frac{BTU}{^\circ F ft^2 hr} \right]$$

$$U_1 = U_2 \frac{A_2}{A_1} \frac{\Delta T_2}{\Delta T_1}$$
Measurement of thermal conductivity: comparative/reference method setup

Temperature controller

Hot stage

Infra-red FLIR camera imaging
Measurement of thermal conductivity: comparative/reference method

Standard: polysiloxane $k_2=0.013$ W/mK*

Sample: aerogel film

$$k_1 = k_2 \frac{A_2 \Delta T_2}{A_1 \Delta T_1} \frac{L_1}{L_2}$$

- Quick and flexible
- Can measure small area samples

*G. Hayase et al., Appl. Materials & Interfaces 6, 9466 (2014)
*G. Zu et al., Chem. Mater. 30, 2759 (2018)
AIR FILMS heat transfer parameters

Heat transfer parameters measured with a comparative method

- Quick and flexible
- Can measure small area samples
- Samples under different conditions, chemistry and composition
Cellulose Aerogel on the window

- 6.5” (diagonal), 2.5 mm thick;
- Cold outside, picture taken from inside;
- The window pane had to be thoroughly cleaned to match low-haze characteristics of our aerogel films!

→ Thermal conductivity 2.5 times lower than that of air!
→ Thermal superinsulation!
Ambient drying & scaling cellulose aerogels

Colloidal dispersion

Hydrogel

Heptane gel

Ambient dried aerogel

Acrylic mold with silicone rubber spacer

4" × 5" × 3mm

1m² × 3mm
Facilities for fabricating meter-square scale aerogels

Home-built curing system

Thermal barrier

Precursor solution

Glass mold

Metal sheet

Heating band

Thermal barrier

Heating bands (2 kW)

m² glass mold with 3mm-thick spacer

1.1m
Facilities for fabricating meter-square scale aerogels
Fabrication of meter-square scale aerogels

Pumping the precursor solution

m²-hydrogel

m²-hydrogel in the water tank
We developed a safe way to scale up (together with EHS and Fire marshall)
Characterization of square-foot composite aerogels

- Composite aerogel
- Thermally insulating
- Visible transparent

Glass container

60°C water

Ice water
Flexible!

Transmission: 95.3%

Haze: 1.9%
Durability?

- Cellulose is hydrophilic & hygroscopic
- Durability challenge?
- Nanostructure + chemical surface modification & additives: super-hydrophobicity achieved!
- UV, humidity, soaking, baking…
- Super-durability achieved!

Water is repelled from the aerogel surface

24h at 80°C, 80% humidity, the intense under UV

500W Hg UV bulb

Visible Transmission after durability testing: no change detected
Haze after durability testing: only 0.6% change

Thermal Conductance after durability testing: less than 1.7% change
Advanced Fenestration Durability Analysis

NREL maintains multiple systems to perform controlled weatherization and exposure testing

Differential Thermal Cycling Unit

Solar and Thermal Weatherization

Thermal Cycling Stress Testing
• Highly insulating windows including framing

Controlled Solar and Thermal Exposure
• Materials and assembly durability
• Dynamic window technologies

See Also: http://www.nrel.gov/pv/performance_reliability/indoor_testing.html
Differential Thermal Stress Testing

NREL’s DTCU is capable of controlling the temperature and RH independently on both sides of a fenestration sample, or wall section at the same time.

Sample Temperature Range: -50°C to 110°C
Relative Humidity: 5–95%
Thermal ramp rate maximum of 2°C/min
Sample Size Maximum: 45” x 45” x 8”

The DTCU is installed in the Optical Characterization Lab
Dynamic Window Durability Testing

Atlas XR260 Weatherometer

Standard for ASTM 2141-14
Absorptive Electrochromic Durability Testing

Supporting development of other dynamic IG technologies.

Environmental Conditions
Irradiance = 1 Sun ASTM AM 1.5
Temperature: -10°C to 60°C (Ambient)
Optimized climate-dependent spectral transmission?

Ideal spectra for summer

Ideal spectra for winter

→ Perfect visible transparency
→ Infrared reflectivity, ideally tunable to be different depending on exterior T
→ Solar heating in IR good in winter but not during summer

→ Can we do it with nano-cellulose liquid crystals again?
Imparting low-e properties onto aerogel films

- Single film only reflects radiation of same handedness satisfying Bragg’s law (LCP)
- Sandwiching films & nematic aerogel doubles reflection

Biomimetic Photonic Structure

Single Photonic Layer

Sandwiched Photonic Layer

- All cellulose-based self-assembled film
- Flexible, scalable fabrication
Modeling three-layer helicoidal films

Parameters of the multilayered film

- Thickness of the films
 CLC:NLC:CLC → 150μm:2690μm:150μm
- Pitch of cholesteric $p=6.4\mu m$
Scalable Production of Cellulose Nanomaterials

Cotton Cellulose
Bacteria Cellulose
Hard, Soft Wood Pulp
Microcrystalline Cellulose

H$_2$SO$_4$
45°C
Purify

+ Commercial CNCs (e.g. Cellulose Lab)

Optimizing the Cellulose Nanocrystal Reaction

- Continuous sonication reduces reaction time (8h → 2h)
- Large-scale centrifuge facilitates additional centrifuge cycles, reduces dialysis time (3d → 2d)
- Almost half as much acid needed (as presented by Vladyslav)
Low-e photonic layers with designable IR reflection to optimize depending on climate
Color Rendering

Following ISO Standard 9050:2003

Color rendering: how color of an object appears to human eyes and how well subtle variations in colors are revealed.

$R_a = 95\%, \text{ CNF aerogel}$

$R_a = 84\%, \text{ CNC-based low-E film}$
Cellulose nanorod aerogel films enable disruptive smart window film technology

- Transparent in visible, IR-reflective
- Thermally insulating
- Flexible, mechanically robust
- Inexpensive
- Retrofitting & new installed products

- Self-assembly of cellulose nanorods derived from the waste
- Cost-effective manufacturing of ordered aerogels (under $5 per square foot)
- Large-scale production of encapsulated flexible AIR FILMS
Applied products for retrofitting

Key phase III goals: Further improve parameters, scale to square meters, develop pilot production approach, more durability tests

Prototype Target Table

<table>
<thead>
<tr>
<th>Metric/Property</th>
<th>Prototype 1.5, Phase II</th>
<th>Prototype 2, Phase II</th>
<th>Prototype 3, Renewal Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter Due</td>
<td>Q6 (all just accomplished)</td>
<td>Q9 (2/2019)</td>
<td>Q14 (5/2020)</td>
</tr>
<tr>
<td>Metric/Property</td>
<td>Size/description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U (BTU/sf/F/hr)</td>
<td>6.5 inch, ≤3 mm thick aerogel</td>
<td>6.5 inch diameter, ≤3 mm thick film</td>
<td>Square-meter, ≤3 mm film</td>
</tr>
<tr>
<td>Haze</td>
<td><5%</td>
<td><3%</td>
<td><2%</td>
</tr>
<tr>
<td>Visible light transmission (Tvis)</td>
<td>>80%</td>
<td>>85%</td>
<td>>90%</td>
</tr>
<tr>
<td>Color rendering index (Rn)</td>
<td>>0.8</td>
<td>> 0.9</td>
<td>> 0.92</td>
</tr>
<tr>
<td>Exterior temperature for interior condensation (C)</td>
<td>Reported</td>
<td>Reported</td>
<td>Less than -5</td>
</tr>
<tr>
<td>Thermal conductance</td>
<td>20 W/K/m²</td>
<td>10 W/K/m²</td>
<td>10 W/K/m²</td>
</tr>
<tr>
<td>Exterior temperature (C) at which the interior pane surface has radiative temperature of 11 deg C</td>
<td>Reported</td>
<td>4</td>
<td>Less than 0</td>
</tr>
<tr>
<td>Durability testing, including, mechanical strength, water infiltration, UV degradation, thermal cycling and thermal gradient tests</td>
<td>Not reported</td>
<td>Pass 1 week moisture/heat test, thermal cycling test, 1 day UV exposure test</td>
<td>Pass 2 weeks moisture/heat test, thermal cycling test, 1 week UV exposure test</td>
</tr>
<tr>
<td>Manufacturing cost, as in the TEA</td>
<td>Pathway to $5/ft²</td>
<td>Pathway to $3/ft²</td>
<td><$3/ft²</td>
</tr>
<tr>
<td>Median service lifetime</td>
<td></td>
<td></td>
<td>>10 years</td>
</tr>
</tbody>
</table>
Key phase III goals: Demonstrate, further improve parameters, scale to square meters, & develop pilot production approach

Installed products for new windows

- Enabled by the phase II breakthroughs, though not planned initially
- Key phase III goals: Demonstrate, further improve parameters, scale to square meters, & develop pilot production approach

Prototype Comparison

<table>
<thead>
<tr>
<th>Metric/Property</th>
<th>Prototype 2.5 (Phase III)</th>
<th>Prototype 3 (Phase III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter Due</td>
<td>Q11 (5/2029)</td>
<td>Q14 (5/2020)</td>
</tr>
<tr>
<td>Metric/Property \ Size/description</td>
<td>6.5 inch diameter, ≤3 mm thick aerogel film between two 3mm thick panes of glass</td>
<td>Square-meter, ≤3 mm thick aerogel film between two panes of 3mm thick glass</td>
</tr>
<tr>
<td>U (BTU/sf/F/hr)</td>
<td><0.5</td>
<td><0.3</td>
</tr>
<tr>
<td>Haze</td>
<td><2%</td>
<td><1%</td>
</tr>
<tr>
<td>Visible light transmission (T(_{vis}))</td>
<td>>80%</td>
<td>>85%</td>
</tr>
<tr>
<td>Color rendering index (R(_a))</td>
<td>> 0.9</td>
<td>> 0.92</td>
</tr>
<tr>
<td>Exterior temperature for interior condensation in degrees C</td>
<td>Reported</td>
<td>Less than -10</td>
</tr>
<tr>
<td>Exterior temperature at which the interior pane surface has radiative temperature of 11°C(^{(9)})</td>
<td>0</td>
<td>Less than -5</td>
</tr>
<tr>
<td>Durability testing, including, mechanical strength, water infiltration, UV degradation, thermal cycling and thermal gradient tests</td>
<td>Pass 1 week moisture/heat test, thermal cycling test, 1 day UV exposure test</td>
<td>Pass 2 weeks moisture/heat test, thermal cycling test, 1 week UV exposure test</td>
</tr>
<tr>
<td>Manufacturing cost, as in the TEA</td>
<td>Pathway to <$10/ft(^2)</td>
<td><$10/ft(^2)</td>
</tr>
<tr>
<td>Estimated median service lifetime</td>
<td>>20 years</td>
<td>>20 years</td>
</tr>
</tbody>
</table>
Conclusions & outlook

→ Liquid Crystal Aerogels to enhance Window Efficiency
→ Multi-layer cholesteric films to yield the low-e character
→ Solving both the thermal conductivity and emissivity problems

Thank you !!!