Impact of News Events on the Financial Markets

Miha Torkar, Dunja Mladenic
Artificial Intelligence Laboratory
Jozef Stefan Institute
Problem Setting

Goal: market analysis using world-wide events

Approach: observe the change in volume (price) between the closing value of today and the day after the event

- Extend traditional technical market analysis to include unstructured datasets
- Combine data sources
 - information from the news
 - historical market data

Usage:
- risk management tool against large market movements around news events
- trading strategy
Overview

- Data: Market and News
- Methods
- Results
- Conclusion and future work
Data

• Combine two sources:
 1. Historical Markets Data
 2. News events

• Analysis done on data of investment bank Goldman Sachs

 • 777 trading days
 • 4336 news events from Event Registry
Market Data

- Open, close, high, low and volume value
- VIX index as measure of volatility
- Daily frequency
- Source: Yahoo Finance
Market data pre-processing

• Market change measured through change in volume and price:

\[(\text{Volume Change})_t \equiv VC_t = \frac{V_{t+1} - V_t}{V_t},\]

\[(\text{Returns})_t \equiv r_t = \frac{P_{t+1} - P_t}{P_t}.\]

• \(V_t, P_t\) are volume and price at time \(t\)

• Additionally calculated: Rolling mean and Exponential Moving Average (EMA) for 5 and 10 days of \(VC_t, r_t\)
News data

• News event:
 • Cluster of articles
 • Multilingual (100+ languages)
 • Extracted: concepts, topics, date, location, social score, ...

• Source: Event Registry
News data (cont.)

• To reduce noise lower boundary for relevance was set, left with 424 events

• For each event, past similar events were found

• Change of market on the dates of past similar events was used as dataset for making prediction about impact of current event

• Prediction from similar events used as a feature in the time series model
Similar Events - example

Goldman Results Smash Expectations
But Stock Can't Escape The Selling Spree

Goldman Sachs 1Q rev jumps 14% on trading

Goldman Profit Rises 74% as Bond Trading Beats Estimates

2014-10-16 = t_{i-k}
(Open, Close, Volume, High, Low, Vix Close)_{t_{i-k}}

2015-04-13 = t_{i-j}
(Open, Close, Volume, High, Low, Vix Close)_{t_{i-j}}

2016-07-19 = t_i
(Open, Close, Volume, High, Low, Vix Close)_{t_i}
Correlation between events relating to Goldman Sachs

Data source: [Event Registry]
Methods – Time series model

• ARMA(p,q) model:

\[
X_t = \mu_t + Z_t,
\]

\[
\mu_t = \sum_{i=0}^{p} \alpha_i X_{t-i} + \sum_{j=1}^{q} \omega_j Z_{t-j}
\]

\[
Z_t = \sigma \epsilon \Rightarrow Z \sim N(0, \sigma^2)
\]

\(X_t\) … Target variable
\(\mu_t\) … Equation for the mean
\(\epsilon\) … Iid normaly distributed noise term
\(\sigma\) … Variance
Methods (cont.)

• Extend the ARMA model to non-constant variance, GARCH model:

\[\sigma_t^2 = \beta_0 + \sum_{i=1}^{r} \beta_i Z_{t-i}^2 + \sum_{j=1}^{s} \gamma_j \sigma_{t-j}^2 \]

• Evaluation criteria
 • Stationarity assumption tested with Augmented Dicky Fuller and KPSS Test
 • Model selection with Akaike and Bayesian Information Criterion (AIC, BIC)
Results

• Relevant features:
 • Volatility - VIX Close price
 • Rolling mean 5 and 10 days
 • Rolling EMA 5 and 10 days
 • Prediction of Returns from similar events

• Predictions from the similar events improve model
• Final Model: ARMA (2,2) – GARCH (5,1)
Results (cont.)

• Improvement in AIC by 11 (drop in relative information lost when a given model is used)

• In terms of relative likelihood, the baseline model is 0.007 times as likely as the proposed model to minimize information loss
Conclusion

• Approach to determining the impact of news events on the financial markets
• Complex news data source was used and combined with market data
• Predictions of returns from past similar events shown to be statistically significant improvement for modelling volume change
• Future work includes further analysis of network formed from similar events

Acknowledgments
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 675044.