A methodology to evaluate the evolution of networks using topological data analysis

Joao Pita Costa and Tihana Galinac Grbac
University of Rijeka

Ljubljana, October 9, SIKDD 2017
Bacterial Evolution

Topological network representation of S. aureus genome profiles. Color corresponds to enrichment in mecA, an antibiotic resistance gene. [Rabadan 2014]
The portal **ScienceAtlas** permits the user to explore scientific collaborations between authors. This is based on the data from the Slovenian Research Agency ARRS, and exhibits a real example of evolving networks: the collaborative research networks of the researchers in the ARRS database.
Topological data analysis - TDA - is interested in problems relating to nonlinear systems, large scale data and development of more accurate models. Persistent homology permits to consider the homology of the filtered simplicial complex at all times during the filtration. Persistent homology identifies a global structure by inferring high-dimensional structure from low-dimensional representations and studying properties of a (often) continuous space by the analysis of a discrete sample of it.
Evolving complex software systems - **EVOSOFT** - focus the influence of **abstract software structures** and **local system properties** in **fault distributions**, affecting mission critical system properties, among which availability and reliability and to develop innovative approaches for **smart management of their operation and evolution**. New findings will open opportunities in many fields, especially in **complex systems theory and its applications**, thus interacting with a wide spectrum of sciences, from natural sciences such as biomedicine to social sciences.

System complex structure motifs:
Network Data
Adjacency Matrix

encoded Topology
Persistence Diagram

Persistent Homology Computation

Absolute Distance
Bottleneck Distance Computation

![Diagrams of network data processing](image-url)
Artificial example of evolving network
The **bottleneck distance** between $X = \text{Dgm}(f)$ and $Y = \text{Dgm}(g)$ is defined as

$$d_B(X,Y) = \inf_{\eta} \sup_{x \in X} \|x - \eta(x)\|_\infty$$

where the infimum is taken over all bijections η from X to Y. Each point with multiplicity k in a multiset is interpreted as k individual points, and the bijection is interpreted between the resulting sets.
\[d(A, B) = 0 \]
\[d(A, C) = 1 \]
\[d(B, C) = 1 \]
Persistence landscapes are techniques of TDA that permit us to measure the pairwise distance between persistence diagrams at several different levels.

The **persistence landscape** is a function $\lambda : N \times R \rightarrow R$, where $R = [-\infty, \infty]$. Alternatively, it may be thought of as a sequence of functions $\lambda_k : R \rightarrow R$, where $\lambda_k(t) = \lambda(k, t)$. Define:

$$\lambda_k(t) = \sup(m \geq 0 \mid \beta^{t-m, t+m} \geq k),$$

with $\lambda : R^2 \rightarrow R$ given by:

$$\lambda(m, h) = \beta^{m-h, m+h} \text{ if } h \geq 0 \text{ and } \lambda(m, h) = 0 \text{ otherwise}.$$
Given persistence diagram D described by its points $p_1 = (u_1, v_1), \ldots, p_s = (u_s, v_s)$ with multiplicities r_1, \ldots, r_s, the method complex of vectors considers complex numbers $z_1 = u_1 + iv_1, \ldots, z_s = u_s + iv_s$ and associates to D the complex polynomial $f_D(t) = \sum_{j=1}^{s} (t - z_j)^{r_j}$ where r is the multiplicity of p_j.

$$p_A = (t-1-3i)(t-2-4i)(t-3-4i) = p$$
$$p_B = (t-1-3i)(t-2-4i)2$$
Thank You : Hvala : Obrigado

jpitadacosta@riteh.hr
jpepita@riteh.hr

Joao Pita Costa

tihana.galinac@riteh.hr
Tihana Galinac Grbacin