Theano
A Fast Python Library for Modelling and Training

Pascal Lamblin
Institut des algorithmes d’apprentissage de Montréal
Montreal Institute for Learning Algorithms
Université de Montréal

Deep Learning Summer School
June 27th, 2017, Montréal
This tutorial will have 4 parts:

- Introduction to Theano – Motivation and design
- Walk-through example – LeNet on MNIST with Lasagne
- Exercises – Basics of Theano
- Hands-on example – Build your own classifier from VGG-16

All the material is online at github.com/mila-udem/summerschool2017

Hands-on examples
Go to http://mila.umontreal.ca/vmip

- Jupyter notebooks
- Executed on AWS instances with a GPU (K80)
Motivation and design

Goals
Design
Status

Symbolic expressions

Declaring inputs
Defining expressions
Deriving gradients

Function compilation

Compiling a Theano function
Graph optimizations
Graph visualization

Optimized execution

Code generation and execution
GPU

Advanced Topics

Looping: the scan operation
Debugging
Extending Theano
Development
Lasagne
Goals

Expressing models as mathematical expressions
- Not only a collection of standard layers or modules
- Not only regular gradient descent
- From an interpreted / scripting language

Automatically deriving gradients
- Define gradients for basic, elementary operations
- Treat those gradients as mathematical expressions as well
- Simplify automatically the resulting expression

Training the model efficiently
- Without having to write C / C++ / CUDA code
- Automatic simplification of the graph
- Automatic code generation
Theano: A mathematical symbolic expression compiler

Easy to define expressions
- Using Python
- Expressions mimic NumPy’s syntax and semantics

Possible to manipulate those expressions
- Substitutions
- Gradient, R operator
- Stability optimizations

Fast to compute values for those expressions
- Speed optimizations
- Use fast back-ends (CUDA, BLAS, custom C code)
- Inplace optimizations to reduce memory usage

Tools to inspect and check for correctness
Current status

- Mature: developed and used since January 2008 (9 years old)
- Theano 0.9 released in March 2017
- Driven > 1000 research papers
- Many contributors (123 for version 0.9)
- Active mailing list with participants worldwide
- Used to teach university classes
- Core technology for Silicon Valley start-ups
- Used for research at large companies

Theano: deeplearning.net/software/theano/
Deep Learning Tutorials: deeplearning.net/tutorial/
Related projects

Many libraries are built on top of Theano (mostly machine learning)

- Blocks
- Keras
- Lasagne
- rllab
- PyMC 3
- ...

For parallelism

- Platoon
- Theano-MPI
- Synkhronos
- Elephas (through Keras)
Motivation and design
 Goals
 Design
 Status
Symbolic expressions
 Declaring inputs
 Defining expressions
 Deriving gradients
Function compilation
 Compiling a Theano function
 Graph optimizations
 Graph visualization
Optimized execution
 Code generation and execution
 GPU
Advanced Topics
 Looping: the scan operation
 Debugging
 Extending Theano
 Development
 Lasagne
Theano defines a **language**, a **compiler**, and a **library**.

- Define a symbolic expression
- Compile a function that can compute values
- Execute that function on numeric values
Symbolic, strongly-typed inputs

import theano
from theano import tensor

\[
x = T.vector(\'x\')
\]
\[
y = T.vector(\'y\')
\]

All Theano variables have a type

\[
x = T.ivector(\'x\')
\]
\[
y = T.fmatrix(\'y\')
\]

\[
x = T.dtensor4(\'x\')
\]
\[
y = T.imatrix(\'y\')
\]

\[
x = T.dscalar(\'x\')
\]
\[
y = T.dvector(\'y\')
\]

\[
x = T.dmatrix(\'x\')
\]
\[
y = T.dthvector(\'y\')
\]

\[
x = T.dtensor3(\'x\')
\]
\[
y = T.dtensor2(\'y\')
\]

\[
x = T.dmatrix('x')
\]
\[
y = T.dmatrix('y')
\]

All Theano variables have a type

shape and memory layout (strides) are not

ndim, dtype, broadcastable pattern, device are part of the type
Shared variables

```python
import numpy as np
np.random.seed(42)
W_val = np.random.randn(4, 3)
b_val = np.ones(3)

W = theano.shared(W_val)
b = theano.shared(b_val)
W.name = 'W'
b.name = 'b'
```

- Symbolic variables, with a **value** associated to them
- The value is **persistent** across function calls
- The value is **shared** among all functions
- The value can be **updated**
Build an expression

NumPy-like syntax

dot = T.dot(x, W)
out = T.nnet.sigmoid(dot + b)

C = ((out - y) ** 2).sum()
C.name = 'C'

▶ This creates new variables
▶ Outputs of mathematical operations
▶ Graph structure connecting them
pydotprint(out, compact=False)
Declaring inputs
Defining expressions
Deriving gradients

Motivation and design
Symbolic expressions
Function compilation
Optimized execution
Advanced Topics

pydotprint(out)
The back-propagation algorithm

Application of the chain-rule for functions from \mathbb{R}^N to \mathbb{R}.

$\begin{align*}
&\text{C : } \mathbb{R}^N \to \mathbb{R} \\
&\text{f : } \mathbb{R}^M \to \mathbb{R} \\
&\text{g : } \mathbb{R}^N \to \mathbb{R}^M \\
&\text{C(x) = f(g(x))} \\
&\frac{\partial C}{\partial x} \bigg|_x = \frac{\partial f}{\partial g} \bigg|_{g(x)} \cdot \frac{\partial g}{\partial x} \bigg|_x
\end{align*}$

The whole $M \times N$ Jacobian matrix $\frac{\partial g}{\partial x} \bigg|_x$ is not needed. We only need $\nabla g_x : \mathbb{R}^M \to \mathbb{R}^N$, $\mathbf{v} \mapsto \mathbf{v} \cdot \frac{\partial g}{\partial x} \bigg|_x$

This is implemented for (almost) each mathematical operation in Theano.
Using \texttt{theano.grad}

\texttt{theano.grad} traverses the graph, applying the chain rule.

\begin{verbatim}
dC_dW = theano.grad(C, W)
dC_db = theano.grad(C, b)
or dC_dW, dC_db = theano.grad(C, [W, b])
\end{verbatim}

- \(dC_dW \) and \(dC_db \) are symbolic expressions, like \(\text{out} \) and \(C \)
- There are no numerical values at this point
- They are part of the same computation graph
- They can also be used to build new expressions

\begin{verbatim}
upd_W = W - 0.1 \times dC_dW
upd_b = b - 0.1 \times dC_db
\end{verbatim}
pydotprint([[dC_dW, dC_db]])
pydotprint([upd_W, upd_b])
Motivation and design
 Goals
 Design
 Status
Symbolic expressions
 Declaring inputs
 Defining expressions
 Deriving gradients
Function compilation
 Compiling a Theano function
 Graph optimizations
 Graph visualization
Optimized execution
 Code generation and execution
 GPU
Advanced Topics
 Looping: the scan operation
 Debugging
 Extending Theano
 Development
 Lasagne
Computing values

Build a callable that compute outputs given inputs

- Shared variables are implicit inputs

```python
predict = theano.function([x], out)
x_val = np.random.rand(4)
print(predict(x_val))
# -> array([ 0.9421594 , 0.73722395, 0.67606977])

monitor = theano.function([x, y], [out, C])
y_val = np.random.uniform(size=3)
print(monitor(x_val, y_val))
# -> [array([ 0.9421594 , 0.73722395, 0.67606977]),
#      array(0.6137821438190066)]

error = theano.function([out, y], C)
print(error([0.942, 0.737, 0.676], y_val))
# -> array(0.613355628529845)
```
A function can compute new values for shared variables, and perform updates.

```python
train = theano.function([x, y], C,
                        updates=[(W, upd_W),
                                (b, upd_b)])

print(b.get_value())
# -> [ 1.  1.  1.]
train(x_val, y_val)
print(b.get_value())
# -> [ 0.99639999  0.97684097  0.98318412]
```

- Variables W and b are **implicit inputs**
- Expressions upd_W and upd_b are **implicit outputs**
- All outputs, including the update expressions, are computed **before** the updates are performed
Graph optimizations

An optimization replaces a part of the graph with different nodes

- The types of the replaced nodes have to match
- The values should be equivalent

Different goals for optimizations:

- Merge equivalent computations
- Simplify expressions: \(x/x \) becomes 1
- Numerical stability: “\(\log(1 + x) \)” becomes “\(\log1p(x) \)”
- Insert in-place an destructive versions of operations
- Use specialized, efficient versions (Elemwise loop fusion, BLAS, cuDNN)
- Shape inference
- Constant folding
- Transfer to GPU
Enabling/disabling optimizations

Trade-off between compilation speed, execution speed, error detection. Different pre-defined modes and optimizers govern the runtime and how much optimizations are applied

- mode='FAST_RUN': default, make the runtime as fast as possible, launching overhead. Includes moving computation to GPU if a GPU was selected
- optimizer='fast_compile': enables code generation and GPU use, but limits graph optimizations
- mode='DEBUG_MODE': checks and double-checks everything, extremely slow
- Enable and disable particular optimizations or sets of optimizations
- Can be done globally, or for each function
Compiling a Theano function

Graph visualization

pydotprint(out)

Motivation and design
Symbolic expressions
Function compilation
Optimized execution
Advanced Topics

Compiling a Theano function
Graph optimizations
Graph visualization

pydotprint(out)

Motivation and design
Symbolic expressions
Function compilation
Optimized execution
Advanced Topics

Compiling a Theano function
Graph optimizations
Graph visualization

pydotprint(out)
pydotprint(predict)
pydotprint([upd_W, upd_b])
pydotprint(train)
debugprint(out)

sigmoid [id A] ''
|Elemwise{add,no_inplace} [id B] ''
|dot [id C] ''
| |x [id D]
| |W [id E]
|b [id F]

dbgprint(predict)

Elemwise{ScalarSigmoid}[(0, 0)] [id A] '' 2
|CGemv{no_inplace} [id B] '' 1
|b [id C]
|TensorConstant{1.0} [id D]
|InplaceDimShuffle{1,0} [id E] 'W.T' 0
| |W [id F]
|x [id G]
|TensorConstant{1.0} [id D]
Motivation and design
 - Goals
 - Design
 - Status

Symbolic expressions
 - Declaring inputs
 - Defining expressions
 - Deriving gradients

Function compilation
 - Compiling a Theano function
 - Graph optimizations
 - Graph visualization

Optimized execution
 - Code generation and execution
 - GPU

Advanced Topics
 - Looping: the scan operation
 - Debugging
 - Extending Theano
 - Development
 - Lasagne
Code generation and execution

Code generation for Ops:
- Ops can define C++/CUDA code computing its output values
- Dynamic code generation is possible
 - For instance, loop fusion for arbitrary sequence of element-wise operations
- Code gets compiled into a Python module, cached, and imported
- Otherwise, fall back to a Python implementation

Code execution through a runtime environment, or VM:
- Calls the functions performing computation for the Ops
- Deals with ordering constraints, lazy execution
- A C++ implementation (CVM) to avoid context switches (in/out of the Python interpreter)
Using the GPU

We want to make the use of GPUs as transparent as possible. Theano features a new GPU back-end, with

- More dtypes, not only float32
- Experimental support for float16 for storage
- Easier interaction with GPU arrays from Python
- Multiple GPUs and multiple streams

Select GPU by setting the device flag to 'cuda' or 'cuda{0,1,2,...}'.

- All shared variables will be created in GPU memory
- Enables optimizations moving supported operations to GPU
- You want to make sure to use float32 for speed
Configuration flags can be set in a couple of ways:

- In the `.theanorc` configuration file:
  ```
  [global]
  device = cuda0
  floatX = float32
  ```
- `THEANO_FLAGS=device=cuda0,floatX=float32` in the shell
- In Python:
  ```python
  theano.config.floatX = 'float32'
  ```
 (theano.config.device cannot be set once Theano is imported, but you can call `theano.gpuarray.use('cuda0')`
Motivation and design
 Goals
 Design
 Status
Symbolic expressions
 Declaring inputs
 Defining expressions
 Deriving gradients
Function compilation
 Compiling a Theano function
 Graph optimizations
 Graph visualization
Optimized execution
 Code generation and execution
 GPU
Advanced Topics
 Looping: the scan operation
 Debugging
 Extending Theano
 Development
 Lasagne
Overview of scan

Symbolic looping

- Can perform map, reduce, reduce and accumulate, ...
- Can access outputs at previous time-step, or further back
- Symbolic number of steps
- Symbolic stopping condition (behaves as do ... while)
- Actually embeds a small Theano function
- Gradient through scan implements backprop through time
- Can be transferred to GPU
Example: Loop with accumulation

```python
k = T.iscalar("k")
A = T.vector("A")

# Symbolic description of the result
result, updates = theano.scan(fn=lambda prior_result, A: prior_result * A,
                               outputs_info=T.ones_like(A),
                               non_sequences=A,
                               n_steps=k)

# We only care about A**k, but scan has provided us with A**1 through A**k.
# Discard the values that we don't care about. Scan is smart enough to
# notice this and not waste memory saving them.
final_result = result[-1]

# compiled function that returns A**k
power = theano.function(inputs=[A, k], outputs=final_result, updates=updates)

print(power(range(10), 2))
# [ 0. 1. 4. 9. 16. 25. 36. 49. 64. 81.]
print(power(range(10), 4))
# [ 0.00000000e+00  1.00000000e+00  1.60000000e+01  8.10000000e+01
#  2.56000000e+02  6.25000000e+02  1.29600000e+03  2.40100000e+03
#  4.09600000e+03  6.56100000e+03]```
Visualization, debugging, and diagnostic tools

The definition of a Theano function is separate from its execution. To help with this, we provide:

- Information in error messages
- Get information at runtime
- Monitor NaN or large value
- Test values when building the graph
- Detect common sources of slowness
- Self-diagnostic tools
Theano can be extended in a few different ways

▶ Creating an Op with Python code
  ▶ Easy, using Python bindings for specialized libraries (PyCUDA, …)
  ▶ Some runtime overhead is possible
  ▶ Example: 3D convolution using FFT on GPU

▶ Creating an Op with C or CUDA code
  ▶ Use the C-API of Python / NumPy / GpuArray, manage refcounts
  ▶ No overhead of Python function calls, or from the interpreter
  ▶ C++ code inline or in a separate file
  ▶ Example: Caffe-style convolutions, using GEMM, on CPU and GPU

▶ Adding an optimization
  ▶ Perform additional graph simplifications
  ▶ Replace part of the graph by a new optimized Op
New features

- New GPU back-end, based on libgpuarray, with:
  - Arrays of all dtypes, half-precision float (float16) for storage
  - Better scheduling
  - Much simpler installation on Windows (conda package)

- Performance improvements
  - Integration of CuDNN (now v6) for 2D/3D convolutions and pooling, RNNs, batch normalization
  - Fast memory allocator on GPU
  - For memory: checkpointing in scan, gradients of long sequences
  - Data parallelism with Platoon (github.com/mila-udem/platoon/)

- Faster graph optimization phase
  - More optimization / compile time trade-offs (optimizer={o0,o1,...,o4})
  - Various ways to avoid recompilation

- Diagnostic tools
  - Interactive visualization (d3viz)
  - PdbBreakPoint
Current development

- Better support for int operations on GPU (indexing, argmax)
- Faster reductions on GPU
- Simpler, faster optimization mode
- Faster generation and loading of C++ / CUDA code
- More convolution variants: grouped, dilated, ... (GSoC)
- More linear algebra operations on GPU (GSoC)
- Data parallelism across nodes in Platoon
- OpFromGraph for re-defining gradients
Projects in our road map

- Constant shape inference when building the graph
- Better compilation cache for generated C++ code
- Continue refactoring graph optimization (for optimization speed)
- Optimize and re-use sub-graphs (like subroutines)
  - Improving OpFromGraph
  - Maybe cache them
- Deterministic mode
- Use CPU memory to offload intermediate results from GPU (maybe limited to Pascal GPUs)
What is Lasagne?

Lasagne is a thin framework/library on top of Theano. lasagne.readthedocs.org

- Does not hide Theano
- Builds Theano graphs easily by using layers
- Contains many preimplemented losses and optimizers
- Does not include a training loop
Acknowledgements

▶ All people working or having worked at the MILA (previously LISA), especially Theano contributors
  ▶ Reyhane Askari Hemmat, Frédéric Bastien, Yoshua Bengio, James Bergstra, Arnaud Bergeron, Steven Bocco, Philemon Brakel, Olivier Breuleux, Pierre Luc Carrier, Mathieu Germain, Ian Goodfellow, Simon Lefrançois, Razvan Pascanu, Joseph Turian, David Warde-Farley, and many more

▶ Compute Canada, Calcul Québec, NSERC, the Canada Research Chairs, CIFAR, and the CFI for providing funding or access to compute resources

▶ CIFAR and CRM for organizing the Deep learning summer school
Thanks for your attention

Questions, comments, requests?
Thanks for your attention

Questions, comments, requests?

github.com/mila-udem/summerschool2017
- Slides: theano.pdf
- Companion notebook: notebooks/intro_theano.ipynb
Thanks for your attention

Questions, comments, requests?

github.com/mila-udem/summerschool2017
  ▶ Slides: theano.pdf
  ▶ Companion notebook: notebooks/intro_theano.ipynb

More resources
  ▶ Documentation: deeplearning.net/software/theano/
  ▶ Code: github.com/Theano/Theano/
  ▶ Deep Learning Tutorials: deeplearning.net/tutorial/
Examples

Go to http://mila.umontreal.ca/vmip