RL in the industry

Nicolas Le Roux

Google Brain

5/7/17
Disclaimer

- This talk is about my own experience
- It will be focused on online advertising
- This is by no means limited to that industry
Two components in RL

- Multi-step episodes
- Reward evaluation and maximization
Two components in RL

- Multi-step episodes
- Reward evaluation and maximization
Retargeting: how it works

- A user lands on a webpage
- Website contacts an ad-exchange
- Ad-exchange contacts the retargeter
- It's an auction: each competitor tells how much it bids
- Highest bidder wins the right to display an ad
Details of the auction

- Real-time bidding (RTB)

- 2nd-price auction: winner pays the second highest bid

- Optimal strategy: bid the expected gain

- $\mathbb{E}[\text{gain}] = \text{price per click (CPC)} \times \mathbb{P}(\text{click})$ (CTR)
Finding a bidding strategy

- We wish to estimate the probability of click
- We have access to labelled data (for won auctions)
- X: information about the user
- Y: click / no click
- First reaction is to build a classifier for this
A/B testing

- Two-arm bandit: system A (current) vs. B (new)
- Split the population for some period of time
- Choose the system with the best average reward
RMSE vs. true revenue
Implicit assumptions

1. The log-loss is a good proxy for the revenue

2. The input distribution is the same
Quality of the proxy

Demonstration
Quality of the proxy

Demonstration

▶ “How will my system be used?”
Quality of the proxy

Demonstration

▶ “How will my system be used?”

▶ Actual rewards must drive the evaluation

▶ There is more to a loss function than its optimum
Is the input distribution the same?

- Labelled data is on the won auctions
- The bidding algorithm impacts input distribution
Is the input distribution the same?

- Labelled data is on the won auctions
- The bidding algorithm impacts input distribution
- The best model can change
Simpson’s paradox

<table>
<thead>
<tr>
<th>CTR</th>
<th>Top banner</th>
<th>Side banner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>60/9000 (0.67%)</td>
<td>50/7000 (0.71%)</td>
</tr>
<tr>
<td>High-value</td>
<td>48/8000 (0.6%)</td>
<td></td>
</tr>
<tr>
<td>Low-value</td>
<td>12/1000 (1.2%)</td>
<td>48/6000 (0.8%)</td>
</tr>
</tbody>
</table>
Simpson’s paradox

<table>
<thead>
<tr>
<th>CTR</th>
<th>Top banner</th>
<th>Side banner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>60/9000 (0.67%)</td>
<td>50/7000 (0.71%)</td>
</tr>
<tr>
<td>High-value users</td>
<td>48/8000 (0.6%)</td>
<td>2/1000 (0.2%)</td>
</tr>
<tr>
<td>Low-value users</td>
<td>12/1000 (1.2%)</td>
<td>48/6000 (0.8%)</td>
</tr>
</tbody>
</table>
Dealing with confounding variables

- Add as many variables as possible in the model
- Run online A/B tests
- Exploration
- Perform counterfactual analyses
Exploring exploration

Demonstration
Exploring exploration

Demonstration

- Exploration converges to the optimum when the model is well-specified!
Exploring exploration

Demonstration

- Exploration converges to the optimum when the model is well-specified!
- It almost never is.
Misspecified model

Demonstration

- Misspecified model: tradeoffs are made
- Tradeoffs are based on input distribution
- This must be controlled
Counterfactual question

“What would have happened if we had taken another decision?”
State → Action → Reward
Counterfactual question

“What would have happened if we had taken another decision?”

State Action Reward

Other action
Current distribution over actions: $p(a|s)$
★ Current distribution over actions: \(p(a|s) \)

★ Expected value of new distribution \(q(a|s) \)?
Current distribution over actions: \(p(a|s) \)

Expected value of new distribution \(q(a|s) \)?

\[
G(q) = \int_s \int_a p(s)q(a|s)r(a, s) \, dads
\]

\[
= \int_s \int_a p(s) \frac{q(a|s)}{p(a|s)} p(a|s)r(a, s) \, dads
\]

\[
\approx \frac{1}{N} \sum_i q(a_i|s_i) \frac{1}{p(a_i|s_i)} r_i .
\]
Current distribution over actions: $p(a|s)$

Expected value of new distribution $q(a|s)$?

$$G(q) = \int_s \int_a p(s)q(a|s)r(a, s) \, dads$$

$$= \int_s \int_a p(s) \frac{q(a|s)}{p(a|s)} p(a|s)r(a, s) \, dads$$

$$\approx \frac{1}{N} \sum_i q(a_i|s_i) \frac{r_i}{p(a_i|s_i)} .$$

This is off-policy policy evaluation.
Offline vs. online evaluation
From evaluation to optimization

- Importance sampling allows us to evaluate q
- We may now optimize over q
From evaluation to optimization

- Importance sampling allows us to evaluate q
- We may now optimize over q
- Rolling out a new policy is expensive
From evaluation to optimization

- Importance sampling allows us to evaluate q
- We may now optimize over q
- Rolling out a new policy is expensive
- How to optimize with few updates?
Benefits of policy evaluation

▶ It is a better predictor
▶ It predicts *tangible* quantities
 ▶ Constraint optimization becomes meaningful
▶ It takes other system components into account
Efficient policy optimization

- Optimizations are performed regularly
- They must be trouble-free
- Stochastic methods are rarely trouble-free
Efficient policy optimization

- Optimizations are performed regularly
- They must be trouble-free
- Stochastic methods are rarely trouble-free
- There is a need for robust optimization methods!
Other unanswered questions

- Inference time is critical
 - How to balance precise and fast inference?
- Rewards are of multiple form (clicks/sales/etc.)
 - How to combine them?
Executive summary

- Robustness and efficiency are critical
- This includes pipeline efficiency
- Improving the model is useless w/o good reward
- RL deals with *tangible* quantities.
Thank you!
nlr@google.com