Deep reinforcement learning

Hado van Hasselt
Big picture
History

Big picture

- Industrial revolution (1750 - 1850) and Machine Age (1870 - 1940)
 - Implement repetitive manual solutions with machines
History

Big picture

- Industrial revolution (1750 - 1850) and Machine Age (1870 - 1940)
 - Implement *repetitive manual solutions* with machines
- Digital revolution (1960 - now) and Information Age
 - Implement *repetitive mental solutions* with machines
History
Big picture

- Industrial revolution (1750 - 1850) and Machine Age (1870 - 1940)
 - Implement repetitive manual solutions with machines
- Digital revolution (1960 - now) and Information Age
 - Implement repetitive mental solutions with machines

In both cases: have to come up with solution first
History

Big picture

- Industrial revolution (1750 - 1850) and Machine Age (1870 - 1940)
 - Implement repetitive manual solutions with machines
- Digital revolution (1960 - now) and Information Age
 - Implement repetitive mental solutions with machines

In both cases: have to come up with solution first

- AI revolution
 - We only specify the goal, solutions are found autonomously
Artificial intelligence

Big picture

- Symbolic GOFAI
 - Conclusions are derived, but rules are programmed and static
 - Hand-picked knowledge formalism & level of abstraction
 - Hard to deal with messy data and uncertainty
Artificial intelligence

Big picture

- **Symbolic GOFAI**
 - Conclusions are derived, but rules are programmed and static
 - Hand-picked knowledge formalism & level of abstraction
 - Hard to deal with messy data and uncertainty

- **Classic statistics**
 - Analyse data
 - We make decisions based on analysis
Artificial intelligence

Big picture

- Symbolic GOFAI
 - Conclusions are derived, but rules are programmed and static
 - Hand-picked knowledge formalism & level of abstraction
 - Hard to deal with messy data and uncertainty

- Classic statistics
 - Analyse data
 - We make decisions based on analysis

- True AI should learn to make decisions autonomously
Reinforcement learning
Reinforcement learning

A framework for making decisions

- RL provides a general-purpose framework for making decisions

Image credits - AIGA Collection, Martin Vanco
Reinforcement learning
A framework for making decisions

- RL provides a general-purpose framework for making decisions
 - RL is about learning to act
 - Each action can alter the state of the world, and can result in reward
 - Goal: optimize future rewards (which may be internal to the agent)
Reinforcement learning

Examples

- Examples of reinforcement learning domains:
 - Video games (including Atari)
 - Board games (including the game of Go)
 - Robotics
 - Recommender systems
 - ...

Deep reinforcement learning — Hado van Hasselt
Reinforcement learning

Examples

- Examples of reinforcement learning domains:
 - Video games (including Atari)
 - Board games (including the game of Go)
 - Robotics
 - Recommender systems
 - …

- Essentially, problems that involves making decisions and/or making predictions about the future
The goal is to learn a policy of behaviour. (At least) three possibilities:

- Learn policy directly
- Learn values of each action - infer policy by inspection
- Learn a model - infer policy by planning
Approaches to reinforcement learning

- The goal is to learn a policy of behaviour
- (At least) three possibilities:
 - Learn policy directly
 - Learn values of each action - infer policy by inspection
 - Learn a model - infer policy by planning
- Agents therefore typically have at least one of these components:
 - **Policy** - maps current state to action
 - **Value function** - prediction of value for each state and action
 - **Model** - agent’s representation of the environment.
Reinforcement learning

Components

- Policy: \(\pi(s) = a \)
- Value: \(Q(s, a) \approx \mathbb{E}[R_{t+1} + R_{t+2} + R_{t+3} + \ldots | S_t = s, A_t = a] \)
- Model: \(m(s, a) \approx \mathbb{E}[S_{t+1} | S_t = s, A_t = a] \)
Reinforcement learning

Components

- **Policy**: \(\pi(s) = a \)
- **Value**: \(Q(s, a) \approx \mathbb{E}[R_{t+1} + R_{t+2} + R_{t+3} + \ldots | S_t = s, A_t = a] \)
- **Model**: \(m(s, a) \approx \mathbb{E}[S_{t+1} | S_t = s, A_t = a] \)

- All components are functions
- We need to represent and learn these functions
Deep reinforcement learning

Use **deep learning** to learn
policies, **values**, and/or **models**
to use in a reinforcement learning domain
Deep reinforcement learning

- Reinforcement learning provides: a framework for making decisions
- Deep learning provides: tools to learn components
Deep reinforcement learning

- Reinforcement learning provides: a framework for making decisions
- Deep learning provides: tools to learn components

\[\text{AI} = \text{RL} + \text{DL} \, ? \]

- Concretely, we implement RL components with deep neural networks
Deep Q Networks
Q-learning
An algorithm to learn values

- The optimal value function fulfills:

\[Q^*(s, a) = \mathbb{E} \left[R_{t+1} + \max_b Q^*(S_{t+1}, b) \mid S_t = s, A_t = a \right] \] (Bellman, 1957)
Q-learning
An algorithm to learn values

- The optimal value function fulfills:

\[Q^*(s, a) = \mathbb{E} \left[R_{t+1} + \max_b Q^*(S_{t+1}, b) \mid S_t = s, A_t = a \right] \]

(Bellman, 1957)

- We can turn this into a TD algorithm:

\[Q_{t+1}(S_t, A_t) = Q_t(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \max_a Q_t(S_{t+1}, a) - Q_t(S_t, A_t) \right) \]

(Watkins 1989)
Q-learning
An algorithm to learn values

- By learning off-policy about the policy that is currently greedy, Q-learning can approximate the optimal value function Q^*.
- With Q^*, we have an optimal policy:

$$\pi^*(s) = \text{argmax } Q^*(s, \cdot)$$
DQN

(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

- Learns to play video games simply by playing
- Can learn Q function by Q-learning

\[\Delta \mathbf{w} = \alpha \left(R_{t+1} + \gamma \max_a Q(S_{t+1}, a; \mathbf{w}) - Q(S_t, A_t; \mathbf{w}) \right) \nabla_{\mathbf{w}} Q(S_t, A_t; \mathbf{w}) \]
DQN

- Aside: we can phrase the update as a **loss**

$$\text{minimize } \frac{1}{2} \| y - q(s, a; \theta) \|_2$$ where, e.g.,
$$y = R_{t+1} + \gamma \max_a q(S_{t+1}, a; \theta)$$

- Typically, we consider the target \(y \) as constant, and ignore the dependence on the parameters
 - E.g., in TensorFlow you might use placeholders, or a `stop_gradient`
 - Interpretation: \(y \) is an estimate for (off-policy) expected return \(\mathbb{E}[G_t | \pi, \sigma] \)
 - Then just update towards this estimate
Deep reinforcement learning — Hado van Hasselt

- Learns to play video games simply by playing
- Can learn Q function by Q-learning

\[\Delta w = \alpha \left(R_{t+1} + \gamma \max_a Q(S_{t+1}, a; \theta) - Q(S_t, A_t; \theta) \right) \nabla \theta Q(S_t, A_t; \theta) \]

- Core components of DQN include:
 - Target networks (Mnih et al. 2015)
 \[\Delta w = \alpha \left(R_{t+1} + \gamma \max_a Q(S_{t+1}, a; \theta^-) - Q(S_t, A_t; \theta) \right) \nabla \theta Q(S_t, A_t; \theta) \]
 - Experience replay (Lin 1992): replay previous tuples (s, a, r, s')
Target Network Intuition

(Slide credit: Vlad Mnih)

- Changing the value of one action will change the value of other actions and similar states.
- The network can end up chasing its own tail because of bootstrapping.
- Somewhat surprising fact - bigger networks are less prone to this because they alias less.

\[L_i(\theta_i) = \mathbb{E}_{s,a,s',r \sim D} \left(r + \gamma \max_{a'} Q(s', a' ; \theta^-) - Q(s, a; \theta_i) \right)^2 \]
Experience replay

- Idea: store experiences, learn from them more than once
 - In Nature DQN, sample uniformly, see each sample 4 times on average
- Benefits:
 - More data efficient
 - Learning resembles supervised learning more (deep learning likes this)
DQN
(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

- Many later improvements to DQN
 - Double Q-learning (van Hasselt 2010, van Hasselt et al. 2015)
 - Prioritized replay (Schaul et al. 2016)
 - Dueling networks (Wang et al. 2016)
 - Asynchronous learning (Mnih et al. 2016)
 - Adaptive normalization of values (van Hasselt et al. 2016)
 - ... many more ...

DQN (Mnih, Kavukcuoglu, Silver, et al., Nature 2015)
Experience replay

- We can view the replay as an empirical (non-parametric) model.
- Can we query this model more cleverly?
- Yes:
 - Sample non-uniformly: prioritized replay really helps! (Schaul et al. 2016)
Prioritized Experience Replay

(Slide credit: Vlad Mnih)

- Replaying all transitions with equal probability is highly suboptimal.
- Replay transitions in proportion to absolute Bellman error:
 \[r + \gamma \max_{a'} Q(s', a'; \theta^-) - Q(s, a; \theta) \]
- Leads to much faster learning.

<table>
<thead>
<tr>
<th>Median</th>
<th>DQN baseline</th>
<th>DQN rank-based</th>
<th>Double DQN (tuned) baseline</th>
<th>Double DQN (tuned) rank-based</th>
<th>Double DQN (tuned) proportional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>48%</td>
<td>106%</td>
<td>111%</td>
<td>113%</td>
<td>128%</td>
</tr>
<tr>
<td></td>
<td>122%</td>
<td>355%</td>
<td>418%</td>
<td>454%</td>
<td>551%</td>
</tr>
<tr>
<td>> baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> human</td>
<td>15</td>
<td>25</td>
<td>30</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td># games</td>
<td>49</td>
<td>49</td>
<td>57</td>
<td>57</td>
<td>57</td>
</tr>
</tbody>
</table>

"Prioritized Experience Replay", Schaul et al. (2016)
Double DQN
(van Hasselt, Guez, Silver, AAAI 2015)

DQN:

\[\Delta w = \alpha \left(r + \max_{a'} Q(s', a'; w^-) - Q(s, a; w) \right) \nabla_w Q(s, a; w) \]
Double DQN
(van Hasselt, Guez, Silver, AAAI 2015)

DQN:

$$\Delta w = \alpha \left(r + \max_{a'} Q(s', a'; w^-) - Q(s, a; w) \right) \nabla_w Q(s, a; w) = \Delta w = \alpha \left(r + Q(s', \arg\max_{a'} Q(s', a'; w^-); w^-) - Q(s, a; w) \right) \nabla_w Q(s, a; w)$$
Double DQN
(van Hasselt, Guez, Silver, AAAI 2015)

DQN:
\[\Delta w = \alpha \left(r + \max_{a'} Q(s', a'; w^-) - Q(s, a; w) \right) \nabla_w Q(s, a; w) \]

\[
= \Delta w = \alpha \left(r + Q(s', \arg\max_{a'} Q(s', a'; w^-); w^-) - Q(s, a; w) \right) \nabla_w Q(s, a; w) \]

Double DQN:
\[\Delta w = \alpha (r + Q(s', \arg\max_{a'} Q(s', a'; w); w^-) - Q(s, a)) \nabla_w Q(s, a; w) \]

Idea: decorrelate selection and evaluation to mitigate overestimation
Double DQN
(van Hasselt, Guez, Silver, AAAI 2015)
The take-home message is:
- Be aware of the properties of your learning algorithms
- Track and analyse statistics
- If you understand what the problem is, a solution is sometimes very simple
Insights

- The take-home message is:
 - Be aware of the properties of your learning algorithms
 - Track and analyse statistics
 - If you understand what the problem is, a solution is sometimes very simple

- **RL-aware DL and DL-aware RL**
 - Target networks, experience replay: DL-aware RL
 - Next up, dueling networks: RL-aware DL
Dueling DQN

(Slide credit: Vlad Mnih)

- Value-Advantage decomposition of Q:
 \[Q^\pi(s, a) = V^\pi(s) + A^\pi(s, a) \]

- Dueling DQN (Wang et al., 2015):
 \[Q(s, a) = V(s) + A(s, a) - \frac{1}{|A|} \sum_{a=1}^{|A|} A(s, a) \]

Atari Results

<table>
<thead>
<tr>
<th></th>
<th>30 no-ops</th>
<th>Human Starts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
</tr>
<tr>
<td>Prior. Duel Clip</td>
<td>591.9%</td>
<td>172.1%</td>
</tr>
<tr>
<td>Prior. Single</td>
<td>434.6%</td>
<td>123.7%</td>
</tr>
<tr>
<td>Duel Clip</td>
<td>373.1%</td>
<td>151.5%</td>
</tr>
<tr>
<td>Single Clip</td>
<td>341.2%</td>
<td>132.6%</td>
</tr>
<tr>
<td>Single</td>
<td>307.3%</td>
<td>117.8%</td>
</tr>
<tr>
<td>Nature DQN</td>
<td>227.9%</td>
<td>79.1%</td>
</tr>
</tbody>
</table>

"Dueling Network Architectures for Deep Reinforcement Learning", Wang et al. (2016)
A task is defined by its rewards

- Atari: change in score
- Go: win (+1) or lose (-1)
Rewards
Defining optimality

- A task is defined by its rewards
 - Atari: change in score
 - Go: win (+1) or lose (-1)
- In DQN, all rewards were clipped to [-1, 1]
 - This helps learning
 - But it also changes the objective
Adaptive normalization
(van Hasselt et al. NIPS 2016)

- Optimization algorithms like normalized updates
- Clipping rewards is one solution, but we can do better
- We tried **adaptive target normalization** (algorithm is called Pop-Art)
Adaptive normalization
(van Hasselt et al. NIPS 2016)
Unclipping rewards

Videos at: hadovanhasselt.com/2016/08/17/atari-videos/
Policy gradients and actor-critic methods

Several slides adapted from Vlad Mnih
Policy Gradient

- We can often do better if the policy is differentiable.
 - Optimize the performance with gradient descent.
- The goal is to compute the gradient of the objective:
 \[\nabla_\theta J(\theta) = \nabla_\theta \mathbb{E} [r_1 + \gamma r_2 + \gamma^2 r_3 + \ldots] \]
- How can we compute this when rewards aren't differentiable?
- It turns out that there is a simple unbiased estimate of this gradient.
Contextual Bandit Policy Gradient

- Consider the simple one-step MDP (contextual bandit) setting.
- Start states are distributed according to d and episodes are one step long.

\[
\nabla_\theta \mathbb{E}[R(S, A)] = \nabla_\theta \sum_s d(s) \sum_a \pi_\theta(a|s) R(s, a) \\
= \sum_s d(s) \sum_a \nabla_\theta \pi_\theta(a|s) R(s, a) \\
= \sum_s d(s) \sum_a \pi_\theta(a|s) \frac{\nabla_\theta \pi_\theta(a|s)}{\pi_\theta(a|s)} R(s, a) \\
= \sum_s d(s) \sum_a \pi_\theta(a|s) \nabla_\theta \log \pi_\theta(a|s) R(s, a) \\
= \mathbb{E}[\nabla_\theta \log \pi_\theta(A|S) R(S, A)]
\]
The gradient of the expected reward is given by:

$$\nabla_\theta \mathbb{E}[R(S, A)] = \mathbb{E}[\nabla_\theta \log \pi_\theta(A|S)R(S, A)]$$

We can approximate this with samples and update the policy using SGD:

$$\theta_{t+1} = \theta_t + \alpha R_{t+1} \nabla_\theta \log \pi_{\theta_t}(A_t|S_t)$$
Policy Gradient Theorem

● A more general result applies to full multi-step MDPs.

● For all differentiable policies:
\[\nabla_\theta J(\theta) = \mathbb{E} \left[\nabla_\theta \log \pi_\theta(a|s)Q^\pi(s, a) \right] \]
where expectation is over states and actions.

● There is an easy sample-based approximation (REINFORCE):
\[\nabla_\theta \log \pi_\theta(a_t|s_t)G_t \]
where
\[G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots \]

“Simple statistical gradient-following algorithms for connectionist reinforcement learning”, Williams (1992)
Variance Reduction

- The REINFORCE gradient suffers from high variance.
- Subtracting a **baseline** keeps the gradient unbiased and reduces the variance:
 \[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \left(G_t - b(s_t) \right) \]
- The state value function \(V(s) \) is a good choice for a baseline.
- Leads to a very intuitive form of update:
 \[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \left(G_t - v(s_t) \right) \]
- → Increase probability when action was better than expected

“Simple statistical gradient-following algorithms for connectionist reinforcement learning”, Williams (1992)
How can policy-based methods be implemented efficiently with neural networks?

DQN uses replay, but standard PG methods are on-policy:
 - Require samples from the current policy.
 - Good off-policy PG methods have since been developed:
 - See ACER (Wang et al., 2016) and PGQL (O’Donoghue et al., 2016).
 - Idea: sample from replay, but adapt the updates so that expected gradient looks as if we use the current policy.
Asynchronous training of RL agents:

- Parallel actor-learners implemented using **CPU threads** and shared parameters.
- Online **Hogwild!**-style asynchronous updates (Recht et al., 2011, Lian et al., 2015).
- No replay? Parallel actor-learners have a similar stabilizing effect.
- Choice of RL algorithm: on-policy or off-policy, value-based or policy-based.

Asynchronous 1-step Q-Learning

- Parallel actor-learners compute online 1-step update

\[y \leftarrow r + \gamma \max_{a'} Q(s', a'; \theta^{-}) \]

\[\Delta \theta \leftarrow \Delta \theta + \frac{\partial (y - Q(s, a; \theta))^2}{\partial \theta} \]

- Gradients accumulated over minibatch before update
Asynchronous N-step Q-Learning

- Q-learning with a uniform mixture of backups of length 1 through N.

$$y \leftarrow \sum_{k=0}^{N-1} \gamma^k r_{t+k} + \gamma^N \max_{a'} Q(s_{t+N}, a'; \theta^-)$$

$$\Delta \theta \leftarrow \Delta \theta + \frac{\partial (y - Q(s_t, a_t; \theta))^2}{\partial \theta}$$

- Variation of “Incremental multi-step Q-learning” (Peng & Williams, 1995).
Async Advantage Actor-Critic (A3C)

- The agent learns a **policy** and a state **value function**
- Uses bootstrapped n-step returns to reduce variance
- The policy gradient multiplied by an estimate of the advantage.
 - Similar to Generalized Advantage Estimation (Schulman et al, 2015).

\[
\nabla_\theta \log \pi(a_t | s_t, \theta) \left(\sum_{k=0}^{N} \gamma^k r_{t+k} + \gamma^{N+1} V(s_{t+N+1}) - V(s_t) \right)
\]

- Train value with n-step TD learning
- You can think of this as minimizing:

\[
\left(\sum_{k=0}^{N} \gamma^k r_{t+k} + \gamma^{N+1} V(s_{s_{t+N+1}}; \theta^-) - V(s_t; \theta) \right)^2
\]
AsyncRL - Learning Speed

- Asynchronous methods trained on 16 CPU cores compared to DQN (blue) trained on a K40 GPU.
- n-step methods can be much faster than single step methods.
- Async advantage actor-critic tends to dominate the value-based methods.

AsyncRL - Scalability

- Average speedup from using K threads to reach a reference score averaged over 7 Atari games.
- **Super-linear** speed-up for 1-step methods.
Data Efficiency of 1-Step Q-learning

- Better **data efficiency** from more threads + speedup from parallel training
 - 1 thread (blue) 16 threads (yellow)
Data Efficiency of A3C

- No data-efficiency gains. Sub-linear speedup from parallel training.
 - 1 thread (blue) 16 threads (yellow)
A3C - ATARI Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Training Time</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQN</td>
<td>8 days on GPU</td>
<td>121.9%</td>
<td>47.5%</td>
</tr>
<tr>
<td>Gorilla</td>
<td>4 days, 100 machines</td>
<td>215.2%</td>
<td>71.3%</td>
</tr>
<tr>
<td>D-DQN</td>
<td>8 days on GPU</td>
<td>332.9%</td>
<td>110.9%</td>
</tr>
<tr>
<td>Dueling D-DQN</td>
<td>8 days on GPU</td>
<td>343.8%</td>
<td>117.1%</td>
</tr>
<tr>
<td>Prioritized DQN</td>
<td>8 days on GPU</td>
<td>463.6%</td>
<td>127.6%</td>
</tr>
<tr>
<td>A3C, FF</td>
<td>1 day on CPU</td>
<td>344.1%</td>
<td>68.2%</td>
</tr>
<tr>
<td>A3C, FF</td>
<td>4 days on CPU</td>
<td>496.8%</td>
<td>116.6%</td>
</tr>
<tr>
<td>A3C, LSTM</td>
<td>4 days on CPU</td>
<td>623.0%</td>
<td>112.6%</td>
</tr>
</tbody>
</table>

A3C - Procedural Maze Navigation in 3D

A3C - Continuous Control

The best deep RL methods are still very data hungry. Especially with **sparse rewards**.

Obvious solution - Learn about the environment.

Augment an RL agent with **auxiliary prediction and control tasks** to improve data efficiency.

The UNREAL agent - UNsupervised REinforcement and Auxiliary Learning.

- "Reinforcement Learning with Unsupervised Auxiliary Tasks", (Jaderberg et al. 2017)
The UNREAL Architecture

● UNREAL augments an LSTM A3C agent with 3 auxiliary tasks.

● Can be used on top of DQN, DDPG, TRPO or other agents.
The UNREAL Architecture

- Base A3C LSTM agent learns from the environment’s scalar reward signal.
- UNREAL acts using the base A3C agent’s policy.
Unsupervised RL

- Augment A3C with many **auxiliary control tasks**.
- Pixel control - learn to maximally change parts of the screen.
- Feature control (not used by UNREAL) - learn to control the internal representations.
The UNREAL Architecture

Focusing on rewards:

- Rebalanced reward prediction.

- Shape the agent’s CNN by classifying whether a sequence of frames will lead to reward.

- No need to worry about off-policy learning.
The UNREAL Architecture

Focusing on rewards:

- Value function replay.
- Faster learning of the value function.
Average human-normalized performance on 13 3D environments from DeepMind Lab.

Tasks include random maze navigation and laser tag.

Roughly a 10x improvement in data efficiency over A3C.

60% improvement in final performance.
Baduk in numbers

- 3,000 Years Old
- 40M Players
- 10^{170} Positions
Why is Baduk hard for computers to play?

Game tree complexity $= b^d$

Brute force search intractable:

1. Search space is huge
2. “Impossible” for computers to evaluate who is winning
Exhaustive search
Reducing depth with value network
Reducing depth with value network
Value network

\[v_\theta(s) \]

\(s \)

\(\theta \)
Convolutional neural network
Reducing breadth with policy network
Policy network

Move probabilities

Position

\[p(\sigma | s) \]
Monte-Carlo rollouts
Neural network training pipeline

Human expert positions → Supervised Learning policy network → Reinforcement Learning policy network → Self-play data → Value network

- Classification
- Self Play
- Regression
Internal Testing

AlphaGo (May 2017) → Wins 3/3 Matches → Ke Jie (9p)
World number 1

AlphaGo (Mar 2016) → Wins 4/5 Matches → Lee Sedol (9p)
Top player of past decade

AlphaGo (Oct 2015) → Wins 5/5 Matches → Fan Hui (2p)
3-times reigning Euro Champion

Calibration

External Testing
Planning with learned models
Learning models

Motivation

- We discussed learning policies and values
- What about models?
Learning models

Motivation

- We discussed learning policies and values
- What about models?
- Models would allow us to plan
 - Planning is useful in combinatorial and compositional domains
 - Trade off local compute to trying to store everything
 - Would allow us to use great planning algorithms
Example
Random Mazes

not connected connected
Example

Pool
Learning models
Complexities

- Learning models from raw inputs is hard
 - What should our model capture - pixels?
 - Objectives do not match: potentially focus on irrelevant details
Learning models

Complexities

● Learning models from raw inputs is hard
 ○ What should our model capture - pixels?
 ○ Objectives do not match: potentially focus on irrelevant details

● What to do with an imprecise model?
 ○ Many planning algorithms assume model is perfect
The Predictron
(Silver, van Hasselt, Hessel, Schaul, Guez, et al., 2016)

- Main idea: learn an **abstract model**
- The model should be **good for planning**
- But it does not have to match the real dynamics
 - See also “Value iteration networks” (Tamar et al., 2016)
The Predictron

(Silver, van Hasselt, Hessel, Schaul, Guez, et al., 2016)
The Predictron
Learning abstract models

- Idea: compute looks like planning, but we do not have a separate model-learning objective
- Instead, the goal is to optimize the outcome of planning with the learnt model
- Then, learn all components end-to-end
- A model is learnt, because by construction a model exists
- But model-semantics (e.g., what does each state mean?) is not prefixed
The Predictron
Learning abstract models
The Predictron

Trajectory prediction with the abstract model

- **Left:**
 Random maze + start position

- **Right:**
 Trajectory for some policy:
 this is the target

- **Middle:**
 Internal partial plans appear in the predictron representation

- Partial trajectories were **not** in the data

- Internal plans compose sequentially into full trajectories
THANK YOU