How do public sector values get into public sector machine learning systems, if at all?

Big Data: New challenges for law and ethics
University of Ljubljana, 22 May 2017

Michael Veale
Department of Science, Technology, Engineering & Public Policy
University College London
m.veale@ucl.ac.uk / @mikarv
Current applications of public sector ML

Anticipating
- Crime hotspots
- Abusive households
- ‘Solvability’ of crimes
- Firm insolvency

Detecting
- Fraudulent tax returns
- Incorrectly coded crime records
- Mobile homes for address registers
- Changes in stats between censuses
Are there public sector values?

regardless of politics, the public sector should be fair and equitable, accountable, reliable, usable, legal, effective, dialogue, innovative, openness–secrecy, advocacy–neutrality, competition–cooperation.

Discovering digital discretion

Street level bureaucrats

System-level bureaucrats

Where does discretion (to be ethical or unethical) go when you digitise?

'Screen-level' bureaucrats

See Bovens and Zouridis (2002) From Street-Level to System-Level Bureaucracies: How Information and Communication Technology is Transforming Administrative Discretion and Constitutional Control 10.1111/0033-3352.00168
Formal or less formal knowledge exchange

Data Protection Act

Conducting privacy impact assessments
code of practice

Images: Canary Wharf, Diliff@Wikimedia Commons cc-by-sa-3.0
Machine learning as a (social) process

Data is super irregular and unclean!

Can we sell our trained model to other government? Or buy one in?

I’m incentivised to collect particular new data now

new data

data → preprocess

data → preprocess

data → preprocess

Data is super irregular and unclean!

Ah! Our modeller just got poached!

Don’t use neural networks, sounds too arcane for the minister

We need to submit a PIA before we start!

Can we sell our trained model to other government? Or buy one in?

I’m incentivised to collect particular new data now

Is it enough like the other departments’?

What do our lawyers think?

Can we make logical rules for certain predictions afterwards?

test data

training data

learning algorithm

trained model

predict

Data distributed weirdly due to primary use

Can we make logical rules for certain predictions afterwards?

Data distributed weirdly due to primary use

Don’t use neural networks, sounds too arcane for the minister

Can we make logical rules for certain predictions afterwards?

Is it enough like the other departments’?

What do our lawyers think?
Shocking lack of empirical data on how machine learning ethics are deployed in practice.

Interviewed:
- 27 individuals (just over 1/5 women)
- working in and with the design and deployment of public sector machine learning systems
- across 5 countries
- about barriers, opportunities, ethical challenges.

Sectors include: police, tax, child protection, fire, council services, interior affairs, prison management, emergency helicopter support

Focus quadrants
Transparency brings mixed blessings

>> Social factors interact with enhanced interpretability.
In compliance models we don’t give many details. We might say we are interested in sectors or size, and perhaps share the weights with one or two key people. [...] We’re primarily concerned that if the model weights were public, their usefulness might diminish.
To explain models we talk about the target parameter and the population, rather than explanations of individuals. The target parameter is what we are trying to find — the development of debts, bankruptcy in six months. The target population is what we are looking for: for example, businesses with minor problems. We only give the auditors [these], not an individual risk profile or risk indicators [...] in case they investigate according to them.
“[Neural networks] might give us a small uplift [in performance], but … our [internal] customers … look at models that aren’t transparent with … suspicion. If they aren’t confident they know what a model is doing, they get wary … [and] concerned about accidentally picking up protected characteristics.”

Sometimes organisations want transparency…
Even if you are diligent, your word might not be enough.

A modeller at a tax agency
“We will surely find things that are uncomfortable, unpleasant, even shocking, and we’ll have to face up to those and be happy we discovered them. This is realistically likely to be what [the local government] is scared of: Aw, shucks! What will this algorithm unearth?!”

An NGO analyst in a predictive child abuse project
Transparency brings mixed blessings

External information and advice important for ex ante governance

>> Practical and governance constraints limit in-data ethical analyses
External information can shine light on fairness issues
Important for ex ante governance

Whether a child is deaf or disabled is empirically linked to abuse, according to [NGO] research. But of course [local governments] are also aware they don’t want parents singled out as potential abusers simply because they have a disabled child.

Police project lead in predictive child abuse project
Transparency brings mixed blessings

External information and advice important for ex ante governance

Organisational routines for humans-in-the-loop can be rich

>> People organise to augment machine learning systems
We also have weekly meeting with all the officers, leadership, management, patrol and so on, and the intelligence officers are the core of this meeting. There, he or she presents what they think is going on in this map, and what should or could be done about it.
We ask intelligence officers, to look at [...] the [predictive] maps. [...] They [...] file or read [...] local reports [...] so often] know something about particular burglars or say a high risk building is no longer so because they local government just arranged all the locks to be changed.

Police lead on a national predictive policing project
Transparency brings mixed blessings

External information and advice important for ex ante governance

Organisational routines for humans-in-the-loop can be rich

Dynamic primary purposes for data might undermine modelling

>> Data wasn’t and isn’t collected with modelling in mind
“The intelligence department got a tip-off and looked into cases of human trafficking at car washes. But now when we try to model human trafficking we only see car washes being predicted — they suddenly seem very high risk. We’ve essentially produced models that tell us where car washes are. This kind of loop is hard to explain to those higher up.
There's one woman who calls in whenever her kid is out after 10pm. She calls back about 30 mins or so later to say that everything is fine [...] But then it looks like in the model that kids always go missing at 10pm [...] In the end I had to manually remove her from the model to remove the spurious pattern.
Transparency brings mixed blessings

External information and advice important for ex ante governance

Organisational routines for humans-in-the-loop can be rich

Dynamic primary purposes for data might undermine modelling

Feedback loops matter often in public sectors, private less so

>> Public sector decisions are consequential, and change the future
The highest probability assessments are on the mark, but actual deployment causes displacement, dispersion and diffusion, and that throws the algorithm into a loop [...] as you deploy resources, displacement and dispersal goes through the roof [...] In the first four weeks of trialling it out, the probability of being correct just tanked
“Race is very predictive of reoffending ... [but] we don’t include race in our predictive models, [because] conviction is [only] a proxy variable for offending ... you can get into cycles looking at certain races which might have a higher chance of being convicted ... you’re building systems not based on the outcome, but on proxy outcomes.”
Transparency brings mixed blessings
 >> Need to consider and study how/if people game and understand models

External information and advice important for ex ante governance
 >> Science advice and data science advice
 >> Paper soon (Veale and Binns, *under review*).

Organisational routines for humans-in-the-loop can be rich
 >> How do they emerge and evolve? Are some better than others?

Dynamic primary purposes for data might undermine modelling
 >> How to bridge ML assumptions and organisational reality?

Feedback loops matter often in public sectors, private less so
 >> Largely ignored in literature, potentially invalidates methods in practice.
 >> Can we elicit and simulate them as part of ML testing?