Assessing Behaviour in ALS:
The importance of using disease-specific tools

Marta Pinto-Grau
Trinity Biomedical Sciences Institute - Trinity College Dublin
Beaumont Hospital Dublin
ENCALS Meeting 2017 - Ljubljana
The ALS-FTD Continuum

A. Genetics of ALS and FTD

B. Pathological inclusions in ALS and FTD

Ling et al., 2013, Neuron, 2013
The ALS-FTD Clinical Overlap

Extremes of a spectrum of overlapping clinical symptoms.

RESEARCH PAPER
The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study
Julie Phukan,1 Marwa Elamin,1 Peter Bede,1 Norah Jordan,2 Laura Gallagher,2
Susan Byrne,1 Catherine Lynch,1 Niall Pender,2 Orla Hardiman1,3

RESEARCH ARTICLE
A Cross-sectional population-based investigation into behavioral change in amyotrophic lateral sclerosis: subphenotypes, staging, cognitive predictors, and survival
Tom Burke1,2, Marta Pinto-Grau1,2, Katie Lonergan1,2, Peter Bede1,2, Meabh O’Sullivan1,
Mark Heverin1, Alice Vajda1, Russell L. McLaughlin3, Niall Pender1,2,a & Orla Hardiman1,2,a
ALS with behavioural impairment (ALSbi)

- Identification of APATHY, with or without other behaviour change,
 OR
- The presence of two or more of the following symptoms:
 - Disinhibition
 - Loss of sympathy/empathy
 - Perseverative, stereotyped or compulsive behaviour
 - Hyperorality/dietary change
 - Loss of insight
 - Psychotic symptoms (somatic delusions, hallucinations, irrational beliefs)
The Assessment of Behaviour in ALS

- Behavioural assessments are fundamental in routine neuropsychological evaluations in ALS.
- Detailed family interviews are not always practicable in a multidisciplinary clinic setting; need for a self-explanatory proxy-report.
- Baseline/premorbid psychological and behavioural status determined, to assess if:
 1. new onset (not premorbid characteristics of the patient),
 2. associated with the time of onset of ALS,
 3. disabling or causing clear impairment. *(Strong et al. 2017)*
- Consider potential confounds.
- Important to use disease-specific tools.
The Beaumont Behaviour Inventory (BBI)

- Your view is very important so please read instructions carefully.
- We would like to ask you a number of questions about changes in behaviour that you may have noticed in the person
 (1) in last 10 years up to start of the motor neuron disease (MND)
 (2) since the start of the symptoms of the motor neuron disease (MND)
 In each case use a tick (✓) to indicate your choice
- If the new behaviour described has been present, then please rate the change as mild, moderate or severe depending on how it has affected your life.
- If the person does not have this behaviour OR has always behaved this way, then select “No/No Change”.

<table>
<thead>
<tr>
<th>Code for Patient</th>
<th>Informant’s relationship to Patient</th>
<th>Date -- /-- /-----</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>IN THE LAST 10 YEARS</th>
<th>SINCE ONSET OF MND</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Has become more irritable than before</td>
<td>No/No change □</td>
</tr>
<tr>
<td></td>
<td>Yes: Mild □ Moderate □ Severe □</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Is much less aware of painful sensations such as hot things, sharp objects etc.</td>
<td>No/No change □</td>
</tr>
<tr>
<td></td>
<td>Yes: Mild □ Moderate □ Severe □</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>When talking, often makes more grammatical mistakes than before</td>
<td>No/No change □</td>
</tr>
<tr>
<td></td>
<td>Yes: Mild □ Moderate □ Severe □</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Is generally not as aware of making mistakes as he/she used to be</td>
<td>No/No change □</td>
</tr>
<tr>
<td></td>
<td>Yes: Mild □ Moderate □ Severe □</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Is less able to react to difficulties, plan or foresee problems</td>
<td>No/No change □</td>
</tr>
<tr>
<td></td>
<td>Yes: Mild □ Moderate □ Severe □</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>If has an idea to do something, he/she has to do it immediately, often without thinking it through</td>
<td>No/No change □</td>
</tr>
<tr>
<td></td>
<td>Yes: Mild □ Moderate □ Severe □</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Shows much more emotion than before, cries or laughs too easily</td>
<td>No/No change □</td>
</tr>
<tr>
<td></td>
<td>Yes: Mild □ Moderate □ Severe □</td>
<td></td>
</tr>
</tbody>
</table>
The Beaumont Behaviour Inventory (BBI)

- ALS-specific 41-item, self-explanatory, proxy-report behavioural assessment.
- Presence of symptoms is graded on a scale from 0 to 3:
 - 0 = no changes
 - 1 = mild changes
 - 2 = moderate changes
 - 3 = severe changes
- Items phased to control for the effect of motor dysfunction on behaviour.
- Behavioural changes rated considering two different timelines.
- Takes 5-10min to complete.
The Beaumont Behaviour Inventory (BBI)

- Clinical Criteria for FTD - The Lund and Manchester Groups (1994)
- Clinical Diagnostic Criteria for FTLD (Neary et al., 1998)
- Revised Diagnostic Criteria for bvFTD (Rascovksy et al., 2011)
Identifying behavioural changes in ALS: Validation of the Beaumont Behavioural Inventory (BBI)

MARWA ELAMIN1*, MARTA PINTO-GRAU1,2*, TOM BURKE1,2, PETER BEDE1, JAMES ROONEY1, MEABHDH O'SULLIVAN1, KATIE LONERGAN1,2, EMMA KIRBY1, EMMA QUINLAN1, NADIA BREEN1, ALICE VAJDA1, MARK HEVERIN1, NIALL PENDER2 & ORLA HARDIMAN1

• Cronbach’s $\alpha = 0.891$ (n=85) // Cronbach’s $\alpha = 0.906$ (n=317).

• Proven Convergent and Discriminant Validity.

• **BBI** score of ≥ 7 as cut-off for abnormality:
 - Sensitivity of 88% and Specificity of 79%

• **BBI** score of ≥ 23 indicates severe changes:
 - AUC = 0.955
 - Sensitivity of 90% and Specificity of 96%
Cross-Validation of ALS-specific measures

- Comparison of the BBI to another ALS-specific tool, to explore their ability to capture the entire spectrum of behavioural changes in ALS.

The ALS-FTD-Q

- ALS-specific 25-item proxy-report questionnaire.
- Phrasing of items adjusted for motor and speech dysfunction.
- Cronbach’s $\alpha = 0.92$
- Proven Convergent and Discriminant Validity.
Cross-Validation of ALS-specific measures

- 60 consecutive patients fulfilling El Escorial criteria for the diagnosis of ALS.
- Attending the MND National Clinic in Beaumont Hospital, Dublin.
- Exclusion criteria: history of other neurological, psychiatric or medical conditions that can cause cognitive and behavioural changes.
- 9% of participants met revised criteria for bvFTD.
- Carer accompanying the patient completed both the BBI and the ALS-FTD-Q during a clinic visit.
- The ALSFRS-R was also completed in a subset of patients (n=20)
- Demographic and clinical characteristics were acquired from the Irish ALS register.
Cross-Validation of ALS-specific measures

<table>
<thead>
<tr>
<th>Demographic and Clinical Characteristics of the patient sample (n=60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender n(%)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Age mean(sd)</td>
</tr>
<tr>
<td>Years of Education mean(sd)</td>
</tr>
<tr>
<td>Age at Onset mean(sd)</td>
</tr>
<tr>
<td>Site of onset n(%)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Age at Diagnosis mean(sd)</td>
</tr>
<tr>
<td>Diagnosis Delay, in months mean(sd)</td>
</tr>
</tbody>
</table>
Cross-Validation of ALS-specific measures

Corroborated **Convergent and Discriminant Validity**:

- Significant large positive correlation between BBI - ALS-FTD-Q \((r=0.807, p<0.0001) \)
- No significant correlations with most demographic and clinical measures:
 - Age \((r=-0.074, p=0.576) \)
 - Education \((r=-0.077, p=0.558) \)
 - Age at onset \((r=-0.100, p=0.450) \)
 - Age at diagnosis \((r=-0.066, p=0.615) \)
 - ALS-FRS-R \((r=-0.014, p=0.954) \)
 - Diagnostic Delay \((r=0.405, p=0.001) // **(r=0.197, p=0.149) \)
Cross-Validation of ALS-specific measures

<table>
<thead>
<tr>
<th>ALS-FTD-Q</th>
<th>BBI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Abnormal</td>
</tr>
<tr>
<td>Normal</td>
<td>32</td>
<td>17</td>
</tr>
<tr>
<td>Abnormal</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>28</td>
</tr>
</tbody>
</table>

- **Sensitivity**: 1
- **Specificity**: 0.65

80% Mild Behaviour Changes
Cross-Validation of ALS-specific measures

- Grammatical mistakes
- Inappropriate emotional display
- Diminished social interest
- Loss of interest or motivation
- Altered response to sensory stimuli
- Distractibility
Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia

A. Early* behavioural disinhibition [one of the following symptoms (A.1–A.3) must be present]:
 A.1. Socially inappropriate behaviour
 A.2. Loss of manners or decorum
 A.3. Impulsive, rash or careless actions

B. Early apathy or inertia [one of the following symptoms (B.1–B.2) must be present]:
 B.1. Apathy
 B.2. Inertia

C. Early loss of sympathy or empathy [one of the following symptoms (C.1–C.2) must be present]:
 C.1. Diminished response to other people’s needs and feelings
 C.2. Diminished social interest, interrelatedness or personal warmth

D. Early perseverative, stereotyped or compulsive/ritualistic behaviour [one of the following symptoms (D.1–D.3) must be present]:
 D.1. Simple repetitive movements
 D.2. Complex, compulsive or ritualistic behaviours
 D.3. Stereotypy of speech

E. Hyperorality and dietary changes [one of the following symptoms (E.1–E.3) must be present]:
 E.1. Altered food preferences
 E.2. Binge eating, increased consumption of alcohol or cigarettes
 E.3. Oral exploration or consumption of inedible objects
General behavioural instruments that do not correct for motor disability tend to overestimate the presence of behavioural changes in ALS.

Disease-specific instruments that do not include the whole spectrum of behaviours characteristic of ALS tend to underestimate its presence.

These additional elements on the BBI improve its discriminatory power for mild behavioural changes.

The BBI is a simple-to-administer ALS-specific behavioural proxy report, with proven adequate psychometric properties, which seems to overcome both limitations.
Acknowledgements

Professor Orla Hardiman

Professor Niall Pender

Dr. Marwa Elamin

Mr. Emmet Costello

Ms. Sarah O’Connor

Dr. Tom Burke

Mr. Mark Heverin