Intranuclear \((G_4C_2)_n\) repeat RNA foci, transcribed from \textbf{C9orf72} hexanucleotide expansion mutation form \textbf{paraspeckle-like} structures
C9orf72 mutation in ALS
C9orf72 mutation in ALS

• The most common genetic cause for ALS – about 40% familial ALS,
C9orf72 mutation in ALS

- The most common genetic cause for ALS – about 40% familial ALS,
C9orf72 mutation in ALS

• The most common genetic cause for ALS – about 40% familial ALS,

• Healthy individuals have 2–19 repeats, ALS patients have from 500 to more than 5000 repeats.
C9orf72 mutation in ALS

- The most common genetic cause for ALS – about 40% familial ALS,
- Healthy individuals have 2–19 repeats, ALS patients have from 500 to more than 5000 repeats.
- The intronic location of G₄C₂ repeat strongly suggests a disease mechanism directly involving RNA,
C9orf72 mutation in ALS

- The most common genetic cause for ALS – about 40% familial ALS,
- Healthy individuals have 2–19 repeats, ALS patients have from 500 to more than 5000 repeats.
- The intronic location of G₄C₂ repeat strongly suggests a disease mechanism directly involving RNA,

Vatovec, *Neurobiol Ageing* 2014
C9orf72 mutation in ALS

- The most common genetic cause for ALS – about 40% familial ALS,

- Healthy individuals have 2–19 repeats, ALS patients have from 500 to more than 5000 repeats.

- The intronic location of G₄C₂ repeat strongly suggests a disease mechanism directly involving RNA,

- Three proposed mechanisms of toxicity:

Vatovec, Neurobiol Ageing 2014
C9orf72 mutation in ALS

- The most common genetic cause for ALS – about 40% familial ALS,
- Healthy individuals have 2–19 repeats, ALS patients have from 500 to more than 5000 repeats.
- The intronic location of G₄C₂ repeat strongly suggests a disease mechanism directly involving RNA,
- Three proposed mechanisms of toxicity:
 - Haploinsufficiency,

Vatovec, *Neurobiol Ageing* 2014
C9orf72 mutation in ALS

- The most common genetic cause for ALS – about 40% familial ALS,
- Healthy individuals have 2–19 repeats, ALS patients have from 500 to more than 5000 repeats.
- The intronic location of G_4C_2 repeat strongly suggests a disease mechanism directly involving RNA,
- Three proposed mechanisms of toxicity:
 - Haploinsufficiency,
 - Repeat-associated RNA toxicity,
The most common genetic cause for ALS – about 40% familial ALS,

Healthy individuals have 2–19 repeats, ALS patients have from 500 to more than 5000 repeats.

The intronic location of G$_4$C$_2$ repeat strongly suggests a disease mechanism directly involving RNA,

Three proposed mechanisms of toxicity:
- Haploinsufficiency,
- Repeat-associated RNA toxicity,
- Dipeptide-repeat protein toxicity.

Vatovec, Neurobiol Ageing 2014
The most common genetic cause for ALS – about 40% familial ALS,

Healthy individuals have 2–19 repeats, ALS patients have from 500 to more than 5000 repeats.

The intronic location of G\textsubscript{4}C\textsubscript{2} repeat strongly suggests a disease mechanism directly involving RNA,

Three proposed mechanisms of toxicity:
- Haploinsufficiency,
- Repeat-associated RNA toxicity,
- Dipeptide-repeat protein toxicity.

Vatovec, *Neurobiol Ageing* 2014
SFPQ, NPM1, EF1α2, hnRNP-H and Prx-III bind to (G₄C₂)₄₈ RNA \textit{in vitro}
SFPQ, NPM1, EF1α2, hnRNP-H and Prx-III bind to \((G_4C_2)_{48}\) RNA \textit{in vitro}
SFPQ, NPM1, EF1α2, hnRNP-H and Prx-III bind to \((G_4C_2)_{48}\) RNA \textit{in vitro}\n
\textit{In vitro} transcription
SFPQ, NPM1, EF1α2, hnRNP-H and Prx-III bind to (G₄C₂)₄₈ RNA in vitro

In vitro transcription
SFPQ, NPM1, EF1α2, hnRNP-H and Prx-III bind to \((G_4C_2)_{48}\) RNA \textit{in vitro}

\textit{In vitro} transcription

Rat cortex and cerebellum
SFPQ, NPM1, EF1α2, hnRNP-H and Prx-III bind to \((G_4C_2)^{48}\) RNA \textit{in vitro}\n
\textit{In vitro} transcription

Rat cortex and cerebellum
SFPQ, NPM1, EF1α2, hnRNP-H and Prx-III bind to \((G_4C_2)_{48}\) RNA \textit{in vitro}

\textit{In vitro} transcription

Separation of nuclear and cytoplasmic fraction

Rat cortex and cerebellum
SFPQ, NPM1, EF1α2, hnRNP-H and Prx-III bind to \((\text{G}_4\text{C}_2)_48\) RNA \textit{in vitro}\n
\textit{In vitro} transcription

Separation of nuclear and cytoplasmic fraction

Rat cortex and cerebellum
SFPQ, NPM1, EF1α2, hnRNP-H and Prx-III bind to \((G_4C_2)_{48}\) RNA \textit{in vitro}\n
\textit{In vitro} transcription

Establishing protein-RNA interactions

Separation of nuclear and cytoplasmic fraction

Rat cortex and cerebellum
SFPQ, NPM1, EF1α2, hnRNP-H and Prx-III bind to (G₄C₂)₄₈ RNA \textit{in vitro}

\textit{In vitro} transcription

Establishing protein-RNA interactions

Separation of nuclear and cytoplasmic fraction

Specific proteins bound to RNA

Rat cortex and cerebellum
SFPQ, NPM1, EF1α2, hnRNP-H and Prx-III bind to \((G_4C_2)_48\) RNA \textit{in vitro}

In vitro transcription

Establishing protein-RNA interactions

Separation of nuclear and cytoplasmic fraction

Rat cortex and cerebellum

Specific proteins bound to RNA
SFPQ, NPM1, EF1\(\alpha\)2, hnRNP-H and Prx-III bind to \((G_4C_2)_{48}\) RNA \textit{in vitro}

\textit{In vitro} transcription

Establishing protein-RNA interactions

Separation of nuclear and cytoplasmic fraction

Rat cortex and cerebellum

Specific proteins bound to RNA

Elution of the proteins
SFPQ, NPM1, EF1α2, hnRNP-H and Prx-III bind to $(G_4C_2)_{48}$ RNA in vitro

In vitro transcription

Establishing protein-RNA interactions

Separation of nuclear and cytoplasmic fraction

Rat cortex and cerebellum

Specific proteins bound to RNA

Elution of the proteins
SFPQ, NPM1, EF1α2, hnRNP-H and Prx-III bind to \((G_4C_2)_{48}\) RNA \textit{in vitro}

\textit{In vitro} transcription

Establishing protein-RNA interactions

Separation of nuclear and cytoplasmic fraction

Rat cortex and cerebellum

Specific proteins bound to RNA

Elution of the proteins
SFPQ, NPM1, EF1α2, hnRNP-H and Prx-III bind to \((G_4C_2)^{48}\) RNA in vitro

In vitro transcription

Establishing protein-RNA interactions

Separation of nuclear and cytoplasmic fraction

Rat cortex and cerebellum

Specific proteins bound to RNA

Elution of the proteins

<table>
<thead>
<tr>
<th>Band No.</th>
<th>Protein</th>
<th>Short name</th>
<th>NCBI accession No.</th>
<th>MW [kDa]</th>
<th>Identified peptides</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 3</td>
<td>Splicing factor, proline- and glutamine-rich</td>
<td>SFPQ</td>
<td>23956214</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>2, 5</td>
<td>Nucleophosmin</td>
<td>NPM1</td>
<td>114763</td>
<td>33</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Elongation factor 1-alpha 2</td>
<td>EF 1α2</td>
<td>50402096</td>
<td>50</td>
<td>41</td>
</tr>
<tr>
<td>4</td>
<td>Heterogenous nuclear ribonucleoprotein H</td>
<td>hnRNP H</td>
<td>120538378</td>
<td>49</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Thioredoxin-dependent peroxide reductase, mitochondrial</td>
<td>Prx-III</td>
<td>11968132</td>
<td>28</td>
<td>2</td>
</tr>
</tbody>
</table>
SFPQ co-localizes with G₄C₂ RNA foci

Hek 293 cells

Transfection, 24h incubation, fixation

FISH, immunofluorescence
Paraspeckles

- Mammalian-specific subnuclear bodies,
- Assembled on the backbone of the long non-coding RNA NEAT1,
- Proposed to modulate post-transcriptional processes by:
 - Sequestration of the RBP and
 - Nuclear retention of mRNAs.

- More than 40 proteins associate with paraspeckles,
- PSPC1 was the first identified protein,
- NONO and SFPQ are essential for the paraspeckle formation.
NONO and PSPC1 also co-localize with G_4C_2 RNA foci

Hek 293 cells
Transfection, 24h incubation, fixation
FISH, immunofluorescence
SFPQ and NONO co-localize with RNA foci in C9orf72 positive cerebellum

- \(G_4C_2\) foci are the **most abundant in cerebellum**,
- Post-mortem brain tissue analyzed using FISH and immunohistochemistry,
- 4.1% of \((G_4C_2)_n\) RNA foci **co-localize with SFPQ** and 4.0% co-localize with NONO.
Do G_4C_2 RNA nuclear foci associate with NEAT1 as well?

- Yes, 14%
- However, additional NEAT1-negative, SFPQ-stained subnuclear bodies in cells expressing G_4C_2 repeats.
The average number of SFPQ-stained subnuclear bodies per cell increased from 2.3 for mock transfected cells to 9.8 for cells expressing G₄C₂ repeats.

Could NEAT1 be replaced by G₄C₂ repeats as a structural backbone for the paraspeckles?
SFPQ colocalizes with G_4C_2 nuclear foci in NEAT1 knockdown HEK293T cells

- Localization of paraspeckle proteins in G_4C_2 foci is a NEAT1-independent event!
G₄C₂ RNA foci co-localize with hLincRNA-p21

- Transcripts of genes with inverted repeat Alu elements associate with paraspeckles.
- Human LincRNA-p21 has an IRAlu element leading to co-localization with paraspeckles.

Hek 293 cells Transfection, 24h incubation, fixation Double FISH, immunofluorescence

Paraspeckle structure, Hu et al. JCB, 2016
Conclusions

- G_4C_2 foci associate with paraspeckle proteins,
- The association is independent of NEAT1,
- G_4C_2 paraspeckle-like structures associate with Alu-repeat RNAs.
Acknowledgements

Boris Rogelj
Simona Darovic
Maja Štalekar
Sonja Prpar Mihevc
Julija Mazej
Jure Pohleven

Micha Drukker
Markus Grosch
Miha Modic

Boris Turk
Marko Fonovič

Christopher E Shaw
Youn-Bok Lee

Funding

"Jožef Stefan" Institute
ARRS (P4-0127), ARRS (J3-6789)