Partial cubes and other ℓ_1-graphs

S. Shpectorov
University of Birmingham

Bled, 27/06/2007
ℓ_1-Graphs

- By ℓ_1 we mean the distance space (X, d), where $X = \mathbb{R}^n$ and $d(x, y) = d_1(x, y) = \sum_i |x_i - y_i|$.

- Every (connected) graph Γ can also be considered as a distance space by setting $X = V\Gamma$, the vertex set of Γ, and by taking $d = d_\Gamma$ to be the path distance on Γ, that is, the number of edges on a shortest path between two vertices.

- We say that a graph Γ is ℓ_1-**embeddable** (or simply, an ℓ_1-**graph**) if there exists an **isometric** mapping from $(V\Gamma, d_\Gamma)$ to the ℓ_1 space (\mathbb{R}^n, d_1) for some n; that is, a mapping $\phi : V\Gamma \to \mathbb{R}^n$ such that $d_1(\phi(x), \phi(y)) = d_\Gamma(x, y)$ for all $x, y \in V\Gamma$.
The Hamming cube graph

- Let Q_n be the graph with the vertex set $\{0, 1\}^n$, where two $\{0, 1\}$-tuples are adjacent if and only if they differ at exactly one place.

- Q_n is known as the Hamming cube graph, d_{Q_n} is known as the Hamming distance, that is, $d_{Q_n}(x, y)$ equals the number of places at which the tuples x and y differ.

- Q_n is an ℓ_1-graph; indeed, $V_{Q_n} \subset \mathbb{R}^n$ and $\phi = id$ is the required isometric embedding.

- The Hamming cube graph has also a different realisation: Take as vertices all subsets of $\Omega = \{1, 2, \ldots, n\}$; two subsets A and B are adjacent if they differ by one elements, that is, if $|A \triangle B| = 1$. In general, for two subsets A and B, $d_{Q_n}(A, B) = |A \triangle B|$.
Assouad-Deza Theorem

- We state it just for the case of graphs.

Theorem A graph Γ is ℓ_1-embeddable if and only if it is embeddable up to a scale into a Hamming cube Q_n.

- Suppose Γ and Δ are graphs. Then a mapping $\phi : V\Gamma \to V\Delta$ is a scale λ embedding if $d_\Delta(\phi(x), \phi(y)) = \lambda d_\Gamma(x, y)$ for all $x, y \in V\Gamma$.

- Clearly, λ is a positive integer; if $\lambda = 1$ then ϕ is an isometric embedding.
Partial cubes

- A subgraph Δ of Γ is isometric if $d_\Delta(x, y) = d_\Gamma(x, y)$ for all $x, y \in V\Delta$. Equivalently, Δ is an isometric subgraph of Γ if the identity mapping from Δ to Γ is an isometric embedding.

- A partial cube is simply any isometric subgraph of the Hamming cube. Note that Q_n is bipartite and so every partial cube is bipartite, too.

- Every partial cube is bipartite; the condition in the Assouad-Deza Theorem is satisfied with $\phi = id$ and $\lambda = 1$.
The half-cube graph

- The bipartite half of Q_n is known as the *half-cube graph* $\frac{1}{2}Q_n$. Thus, the vertices of $\frac{1}{2}Q_n$ are all even-size subsets of $\Omega = \{1, 2, \ldots, n\}$ and two such subsets A and B are adjacent if $|A \triangle B| = 2$. In general we have for two vertices A and B of $\frac{1}{2}Q_n$ that $d_{\frac{1}{2}Q_n}(A, B) = \frac{1}{2}|A \triangle B|$.

- Although $\frac{1}{2}Q_n$ is not a subgraph of Q_n, the identity mapping from $\frac{1}{2}Q_n$ to Q_n is a scale two embedding, and so $\frac{1}{2}Q_n$ is an ℓ_1-graph.

- Similarly, every isometric subgraph of $\frac{1}{2}Q_n$ is scale two embeddable in Q_n, and so it is an ℓ_1-graph.

- Most ℓ_1-graphs require scale two; the most well-known examples of ℓ_1-graphs requiring $\lambda > 2$ are the complete graphs and the cocktail-party graphs (aka hyperoctahedra).
Suppose Γ is an ℓ_1-graph and $\phi : V\Gamma \to VQ_n$ is a scale λ embedding. Then we assign to every edge xy of Γ a label $\ell(xy) = \phi(x)\triangle\phi(y)$. Every label consists of exactly λ elements.

If $x, y \in V\Gamma$ and $x = x_0, x_1, \ldots, x_m = y$ is an arbitrary path from x to y then $\phi(x)\triangle\phi(y) = \ell(x_0x_1)\triangle\ell(x_1x_2)\triangle \ldots \triangle\ell(x_{m-1}x_m)$. Thus, if we know the labels and we know $\phi(x)$ for one vertex x then we know the entire embedding.

Suppose $A \subseteq \Omega$. The shift ϕ_A of ϕ is defined by $\phi_A(x) = \phi(x)\triangle A$ for all $x \in V\Gamma$. If ϕ is a scale λ embedding then so is ϕ_A.

We say that two scale embeddings ϕ and ψ are shift-equivalent if $\psi = \phi_A$ for some $A \subseteq \Omega$. Labels define the embedding up to this equivalence.
Key lemma about labels

Here are a few useful facts about some elementary isometric subgraphs of Γ:

1. Labels along a geodesic path are disjoint.
2. On an isometric cycle of even length, labels of opposite edges are equal; labels on non-opposite edges are disjoint.
3. On an isometric cycle of odd length, labels on opposite edges share exactly half (that is, $\frac{\lambda}{2}$) of their elements; labels on non-opposite edges are disjoint.

Related definitions: A path in Γ is called *geodesic* if it is a shortest path between its ends; equivalently, it’s an isometric string subgraph in Γ. Two edges in a cycle are called *opposite* if they are at maximal distance in that cycle. Clearly, in a cycle of even length every edge has a unique opposite edge; in a cycle of odd length each edge has two opposite edges.
Zones

- We will call the elements of Ω the *coordinates* of the cube Q_n.

- For a coordinate i, the set of all edges xy such that $i \in \ell(xy)$ is called the i-zone of Γ.

- Given a partition $\Omega = A \cup B$, the *cut* corresponding to this partition consists of all edges going across the partition. We note that every zone is a cut; indeed, we set $A = \{x \in V\Gamma \mid i \in \phi(x)\}$ and $B = \{x \in V\Gamma \mid i \notin \phi(x)\}$.

- Furthermore, every zone is a *convex cut*, that is, both parts A and B of the partition induce convex subgraphs of Γ. We call these convex subgraphs the *halves* (or i-halves, to be precise) of Γ. Recall that a subgraph is convex if it contains every shortest path between its vertices. Every convex subgraph is isometric.
Graphs q_n

- These are trivalent plane graphs, whose faces are all q-gons or hexagons, $q = 3, 4,$ or 5. The graphs 5_n are also known as fullerene graphs.

- It is easy to see that among 3_n’s only the smallest graph, the tetrahedron K_4, is ℓ_1-embeddable.

- Deza and Dutour did an extensive computer search of ℓ_1-embeddable 4_n and 5_n graphs and found five examples in each case. This led them to conjecture that the examples they found were the only ℓ_1-embeddable 4_n and 5_n graphs in existence.

- The case of 4_n was resolved in affirmative by Deza, Dutour, and Sh. The fullerene case turned out to be much harder; however, it was finally resolved (again, in affirmative) this year by Marcușanu and Sh.
Suppose Γ is a fullerene graph. As a first step, we prove the following useful properties of Γ:

- The only cycles (without returns) in Γ of length up to six are the *face cycles*.

- Furthermore, the face cycles are convex and hence isometric.
Zones in fullerenes

Now suppose that the fullerene Γ is ℓ_1-embeddable (in Q_n via ϕ). Combining the fact that the face cycles are isometric with the result on the labeling of isometric cycles, we obtain a nice description of zones in Γ, namely:

- Edges in the i-zone form a “railroad”-like cyclic structure.

- Switching to the dual graph, we visualize the i-zone as a true cycle in the dual graph, or maybe a union of several cycles. The cycles cannot intersect each other, nor can they self-intersect.

- Furthermore, using the convexity of i-halves, we can show that in fact every i-zone produces a single cycle in the dual graph, which we call the i-zone cycle.

- This also gives a nice visualization of the i-halves: Cut the sphere through the zone cycle. The resulting two discs contain the two i-halves.
The core argument

The fullerene Γ contains twelve pentagonal faces and an unknown number of hexagonal faces. The core part of the proof is where we show that Γ cannot be too big, that is, the pentagonal faces cannot be too far from each other.

- This step is easy for 4_n's, because it can be done locally. Namely, considering a quadrangular face F and assuming that F is surrounded by several (just two!) layers of hexagonal faces, we get a contradiction.

- This “local” type of argument is impossible for fullerenes. Indeed, a single pentagon surrounded by any number of layers of hexagons never yields a contradiction because all such configurations are ℓ_1-embeddable!!

- Hence the proof must involve two pentagonal faces.
Shaping the seed

Choose two closest pentagonal faces F and G in Γ. (The distance is measured in the dual graph.) Then F and G can be included in a subgraph called a seed. The idea and terminology go back to the PhD thesis of Puharic.

- Two shortest paths between F and G in the dual graph are called *elementary equivalent* if they differ in just one vertex (i.e., face of Γ). Extending this by transitivity, we get an equivalence on the shortest paths between F and G.

- Pick an equivalence class. The faces of Γ involved in the paths from this class form a parallelogram structure as in the hexagonal lattice, but with F and G at the corners with acute angles.

- Say, this has sides of s and t faces, with $s \leq t$. If $s \neq 0$, extend the parallelogram with two additional triangles at the sides of length s. The resulting subgraph is the *seed*. All faces involved in the seed, apart from F and G, are hexagons.
The contradiction and small cases

- If \(s + t \geq 3 \) then next to the seed we find two straight zone segments. (\textit{Straight} means that only hexagonal faces are involved) The seed together with these two zone segments forms an impossible configuration, thus yielding a contradiction.

- This leaves the small cases: \((s,t) = (0,1), (1,1), \) and \((0,2)\). The case \((s,t) = (1,1)\) is eventually ruled out; the case \((s,t) = (0,2)\) yields the largest example on 80 vertices; while the case \((s,t) = (0,1)\) (adjacent pentagonal faces) branches to yield the remaining four examples: the dodecahedron on 20 vertices and three further fullerenes on 26, 40, and 44 vertices.
$C_{26}(D_{3h})$
$C_{40}(T_d)$
$C_{44}(T)$
$C_{80}(I_h)$
Let Γ now be a partial cube.

- Recall that partial cubes are isometric subgraphs of Hamming cubes. In particular, $\lambda = 1$ and partial cubes inherit the bipartite property of Q_n.

- Since $\lambda = 1$, the label of each edge of Γ consists of a single coordinate, that is, every edge is contained in a single zone. In fact, the zones in partial cubes are usually called the Θ-classes, because they are the equivalence classes of a certain equivalence relation Θ defined on the edge set $E\Gamma$. Let $i(\Gamma)$ denote the number of Θ-classes of Γ.

- Since convex subgraphs have played an important role in this talk, let us define the convex excess of Γ (denoted $e(\Gamma)$) as $\sum_{C \in \mathcal{C}} \frac{|C| - 4}{2}$, where \mathcal{C} denotes the set of all convex cycles of Γ.
An Euler-type inequality

Theorem (Klavžar-Sh) *If Γ is a partial cube then*

$$2|V_\Gamma| - |E_\Gamma| - i(\Gamma) - e(\Gamma) \leq 2.$$

- This inequality is a generalization of a similar inequality $2|V_\Gamma| - |E_\Gamma| - i(\Gamma) \leq 2$, which is true for all median graphs. A graph is called a *median graph* if for any three vertices there is a fourth point that belongs to a shortest path between any two of the three original vertices.

- Note that a median graph contains no convex cycles of length more than four, so the convex excess is zero.

- The proof is done by induction on $i(\Gamma)$.

Contraction and extension

- The induction step is based on the operation of contraction. Namely, given a partial cube Γ we can construct a new partial cube Γ' by contracting a single zone (say, the i-zone) of Γ. Under this operation edges from the i-zone turn into vertices and quadrangles involving edges from the i-zone turn into edges.

- The reverse operation is called the expansion. We note that the images of the i-halves (which are convex in Γ) are isometric in Γ', and so they form an isometric cover. Every expansion operation starts from an isometric cover.
Exact cases

- It is an interesting problem to see for which partial cubes our inequality is in fact an equality.

- For median graphs the answer is known: If Γ is a median graph then $2|V\Gamma| - |E\Gamma| - i(\Gamma) = 2$ if and only if Γ is cube-free.

- We don’t have an ultimate answer for the general partial cubes; however, here is an attempt at an answer (and, as a by-product, an interesting related concept).
The zone graph

Suppose Γ is a partial cube and $i \in \Omega$.

- The i-zone graph is a weighted graph, whose vertex set is the set of edges from the i-zone and whose edges are all convex cycles containing edges from the i-zone. The edge C carries the weight $\frac{|C|-2}{2}$.

- Every zone graph is connected.

- Every zone graph is ℓ_1-embeddable (as a naturally defined distance space).

- (?) We have $2|V\Gamma| - |E\Gamma| - i(\Gamma) - e(\Gamma) = 2$ if and only if all zone graphs in Γ are weighted trees.