Architectures for Distributed Mining of Big Data

Albert Bifet (@abifet)

MAESTRA Summer School, 6 September 2016
albert.bifet@telecom-paristech.fr
Big Data

BIG DATA are data sets so large or complex that traditional data processing applications can not deal with.

BIG DATA is an OPEN SOURCE Software Revolution.
Big Data

BIG DATA are data sets so large or complex that traditional data processing applications can not deal with.

BIG DATA is an OPEN SOURCE Software Revolution.
Big Data 6V’s

- Volume
- Variety
- Velocity
- Value
- Variability
- Veracity
Controversy of Big Data

- All data is BIG now
- Hype to sell Hadoop based systems
- Ethical concerns about accessibility
- Limited access to Big Data creates new digital divides
- Statistical Significance:
 - When the number of variables grow, the number of fake correlations also grow Leinweber: S&P 500 stock index correlated with butter production in Bangladesh
Batch and Streaming Engines

Batch only

Streaming only

Hybrid

Figure: Batch, streaming and hybrid data processing engines.
Motivation MapReduce
How Many Servers Does Google Have?

Figure: Asking Google
Typical Big Data Challenges

• How do we break up a large problem into smaller tasks that can be executed in parallel?
• How do we assign tasks to workers distributed across a potentially large number of machines?
• How do we ensure that the workers get the data they need?
• How do we coordinate synchronization among the different workers?
• How do we share partial results from one worker that is needed by another?
• How do we accomplish all of the above in the face of software errors and hardware faults?
There was need for an abstraction that hides many system-level details from the programmer.
There was need for an abstraction that hides many system-level details from the programmer.

MapReduce addresses this challenge by providing a simple abstraction for the developer, transparently handling most of the details behind the scenes in a scalable, robust, and efficient manner.
MapReduce, BigTable, Spanner

MapReduce: Simplified Data Processing on Large Clusters
Jeffrey Dean and Sanjay Ghemawat
OSDI’04: Sixth Symposium on Operating System Design and Implementation
Jeff Dean Facts

Google Culture Facts

"When Jeff Dean designs software, he first codes the binary and then writes the source as documentation."

"Jeff Dean compiles and runs his code before submitting, but only to check for compiler and CPU bugs."
Jeff Dean Facts

Google Culture Facts

“The rate at which Jeff Dean produces code jumped by a factor of 40 in late 2000 when he upgraded his keyboard to USB2.0.”

“The speed of light in a vacuum used to be about 35 mph. Then Jeff Dean spent a weekend optimizing physics.”
MapReduce
References
<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 cache reference</td>
<td>0.5 ns</td>
</tr>
<tr>
<td>Branch mispredict</td>
<td>5 ns</td>
</tr>
<tr>
<td>L2 cache reference</td>
<td>7 ns</td>
</tr>
<tr>
<td>Mutex lock/unlock</td>
<td>100 ns</td>
</tr>
<tr>
<td>Main memory reference</td>
<td>100 ns</td>
</tr>
<tr>
<td>Compress 1K bytes with Zippy</td>
<td>10,000 ns</td>
</tr>
<tr>
<td>Send 2K bytes over 1 Gbps network</td>
<td>20,000 ns</td>
</tr>
<tr>
<td>Read 1 MB sequentially from memory</td>
<td>250,000 ns</td>
</tr>
<tr>
<td>Round trip within same datacenter</td>
<td>500,000 ns</td>
</tr>
<tr>
<td>Disk seek</td>
<td>10,000,000 ns</td>
</tr>
<tr>
<td>Read 1 MB sequentially from network</td>
<td>10,000,000 ns</td>
</tr>
<tr>
<td>Read 1 MB sequentially from disk</td>
<td>30,000,000 ns</td>
</tr>
<tr>
<td>Send packet CA to Netherlands to CA</td>
<td>150,000,000 ns</td>
</tr>
</tbody>
</table>
Typical Big Data Problem

• Iterate over a large number of records
• Extract something of interest from each
• Shuffle and sort intermediate results
• Aggregate intermediate results
• Generate final output
Typical Big Data Problem

- Iterate over a large number of records
- Extract something of interest from each –MAP–
- Shuffle and sort intermediate results
- Aggregate intermediate results –REDUCE–
- Generate final output
Figure: Map as a transformation function and Fold as an aggregation function
Map and Reduce functions

- In MapReduce, the programmer defines the program logic as two functions:
 - **map**: \((k_1, v_1) \rightarrow list[(k_2, v_2)]\)
 - Map transforms the input into key-value pairs to process
 - **reduce**: \((k_2, list[v_2]) \rightarrow list[(k_3, v_3)]\)
 - Reduce aggregates the list of values for each key

- The MapReduce environment takes charge of distribution aspects.

- A complex program can be decomposed as a succession of Map and Reduce tasks
Simplified view of MapReduce

Figure: Two-stage processing structure
An Example Application: Word Count

Input Data

foo.txt: Sweet, this is the foo file
bar.txt: This is the bar file

Output Data

sweet 1
this 2
is 2
the 2
foo 1
bar 1
file 2
WordCount Example

1: **class** Mapper
2: **method** Map(docid \(a \), doc \(d \))
3: **for all** term \(t \in doc \ d \) do
4: Emit(term \(t \), count 1)
5: end for
6: end method
7: end class

1: **class** Reducer
2: **method** Reduce(term \(t \), counts \([c_1, c_2, \ldots] \))
3: \(sum \leftarrow 0 \)
4: **for all** count \(c \in counts \ [c_1, c_2, \ldots] \) do
5: \(sum \leftarrow sum + c \)
6: end for
7: Emit(term \(t \), count \(sum \))
8: end method
9: end class
Simple MapReduce Variations

No Reducers

Each mapper output is directly written to a file disk

No Mappers

Not possible!

Identity Function Mappers

Sorting and regrouping the input data

Identity Function Reducers

Sorting and regrouping the data from mappers
Simple MapReduce Variations

No Reducers
Each mapper output is directly written to a file disk
Simple MapReduce Variations

No Reducers
Each mapper output is directly written to a file disk

No Mappers
Simple MapReduce Variations

No Reducers
Each mapper output is directly written to a file disk

No Mappers
Not possible!

Identity Function Mappers
Sorting and regrouping the input data
Simple MapReduce Variations

No Reducers
Each mapper output is directly written to a file disk

No Mappers
Not possible!

Identity Function Mappers
Sorting and regrouping the input data

Identity Function Reducers
Sorting and regrouping the data from mappers
MapReduce Framework

Figure: Runtime Framework
MapReduce Framework

- Handles scheduling
 - Assigns workers to map and reduce tasks
- Handles “data distribution”
 - Moves processes to data
- Handles synchronization
 - Gathers, sorts, and shuffles intermediate data
- Handles errors and faults
 - Detects worker failures and restarts
- Everything happens on top of a distributed filesystem
Fault Tolerance

The Master periodically checks the availability and reachability of the tasktrackers (heartbeats) and whether map or reduce jobs make any progress

- if a mapper fails, its task is reassigned to another tasktracker
- if a reducer fails, its task is reassigned to another tasktracker; this usually require restarting mapper tasks as well (to produce intermediate groups)
- if the jobtracker fails, the whole job should be re-initiated

Speculative execution: schedule redundant copies of the remaining tasks across several nodes
Complete MapReduce Framework

Figure: Partitioners and Combiners
Partitioners and Combiners

Partitioners
Divide up the intermediate key space and assign intermediate key-value pairs to reducers: “simple hash of the key”

\[
\text{partition}: (k, \text{number of partitions}) \rightarrow \text{partition for } k
\]

Combiners
Optimization in MapReduce that allow for local aggregation before the shuffle and sort phase: “mini-reducers”

\[
\text{combine}: (k_2, \text{list}[v_2]) \rightarrow \text{list}[(k_3, v_3)]
\]

Run in memory, and their goal is to reduce network traffic.
MapReduce Algorithms
Simple MapReduce Algorithms

Distributed Grep

- Grep: reports matching lines on input files
 - Split all files across the nodes
 - Map: emits a line if it matches the specified pattern
 - Reduce: identity function

Count of URL Access Frequency

- Processing logs of web access
 - Map: outputs \(<\text{URL}, 1>\>
 - Reduce: Adds together and outputs \(<\text{URL}, \text{Total Count}>\)
Simple MapReduce Algorithms

Reverse Web-Link Graph

- Computes source list of web pages linked to target URLs
 - Map: outputs <target, source>
 - Reduce: Concatenates together and outputs <target, list(source)>

Inverted Index

- Build an inverted index
 - Map: emits a sequence of <word, docID>
 - Reduce: outputs <word, list(docID)>
WordCount Example Revisited

1: class Mapper
2: method Map(docid a, doc d)
3: for all term t ∈ doc d do
4: Emit(term t, count 1)
5: end for
6: end method
7: end class

1: class Reducer
2: method Reduce(term t, counts [c₁, c₂, ...])
3: sum ← 0
4: for all count c ∈ counts [c₁, c₂, ...] do
5: sum ← sum + c
6: end for
7: Emit(term t, count sum)
8: end method
9: end class
WordCount Example Revisited

1: `class` Mapper
2: `method` Map(docid `a`, doc `d`)
3: `for all` term `t` ∈ doc `d` `do`
4: ` Emit(term t, count 1)`
5: `end for`
6: `end method`
7: `end class`

1: `class` Mapper
2: `method` Map(docid `a`, doc `d`)
3: ` H ← new AssociativeArray`
4: `for all` term `t` ∈ doc `d` `do`
5: ` H{t} ← H{t} + 1` ▷ Tally counts for entire document
6: `end for`
7: `for all` term `t` ∈ `H` `do`
8: ` Emit(term t, count `H{t}`)`
9: `end for`
10: `end method`
11: `end class`
WordCount Example Revisited

1: class Mapper
2: method Initialize
3: \(H \leftarrow \text{new AssociativeArray} \)
4: end method
5: method Map(docid \(a \), doc \(d \))
6: for all term \(t \in \text{doc} \(d \) \) do
7: \(H\{t\} \leftarrow H\{t\} + 1 \) \quad \triangleright \text{Tally counts across documents}
8: end for
9: end method
10: method Close
11: for all term \(t \in H \) do
12: Emit(term \(t \), count \(H\{t\} \))
13: end for
14: end method
15: end class

Word count mapper using the “in-mapper combining”.
Example

Given a large number of key-values pairs, where

• keys are strings
• values are integers

find all average of values by key

Example

Average Computing Example

1: class Mapper
2: method Map(string t, integer r)
3: Emit(string t, integer r)
4: end method
5: end class

1: class Reducer
2: method Reduce(string t, integers [r₁, r₂, . . .])
3: sum ← 0
4: cnt ← 0
5: for all integer r ∈ integers [r₁, r₂, . . .] do
6: sum ← sum + r
7: cnt ← cnt + 1
8: end for
9: r_avg ← sum/cnt
10: Emit(string t, integer r_avg)
11: end method
12: end class
Average Computing Example

Example

Given a large number of key-values pairs, where
- keys are strings
- values are integers
find all average of values by key

Average computing is not associative

- \(\text{average}(1,2,3,4,5) \neq \text{average}(\text{average}(1,2), \text{average}(3,4,5)) \)
- \(3 \neq \text{average}(1.5, 4) = 2.75 \)
Monoidify!

Monoids as a Design Principle for Efficient MapReduce Algorithms (Jimmy Lin)

Given a set S, an operator \oplus and an identity element e, for all a, b, c in S:

- **Closure**: $a \oplus b$ is also in S.
- **Associativity**: $a \oplus (b \oplus c) = (a \oplus b) \oplus c$
- **Identity**: $e \oplus a = a \oplus e = e$
Average Computing Example

1: class Mapper
2: method Initialize
3: S ← new AssociativeArray
4: C ← new AssociativeArray
5: end method
6: method Map(string t, integer r)
7: S{t} ← S{t} + r
8: C{t} ← C{t} + 1
9: end method
10: method Close
11: for all term t ∈ S do
12: Emit(term t, pair (S{t}, C{t}))
13: end for
14: end method
15: end class
A given application may have:

- A chain of map functions
 - (input processing, filtering, extraction. . .)
- A sequence of several map-reduce jobs
- No reduce task when everything can be expressed in the map (zero reducers, or the identity reducer function)

Prefer:

- Simple map and reduce functions
- Mapper tasks processing large data chunks (at least the size of distributed filesystem blocks)
Apache Flink Motivation
Apache Flink Motivation

1. Real time computation: streaming computation
2. Fast, as there is not need to write to disk
3. Easy to write code
Real time computation: streaming computation

MapReduce Limitations

Example

How compute in real time (latency less than 1 second):

1. frequent items as Twitter hashtags
2. predictions
3. sentiment analysis
Easy to Write Code

case class Word (word: String, frequency: Int)

DataSet API (batch):

val lines: DataSet[String] = env.readTextFile(...)

lines.flatMap { line => line.split(" ")
 .map(word => Word(word, 1))
 .groupBy("word").sum("frequency")
 .print()
Easy to Write Code

```scala
case class Word (word: String, frequency: Int)

DataSet API (batch):

val lines: DataSet[String] = env.readTextFile(...)

lines.flatMap { line => line.split(" ")
    .map(word => Word(word, 1))
    .groupBy("word").sum("frequency")
}.print()

DataStream API (streaming):

val lines: DataStream[String] = env.fromSocketStream(...)

lines.flatMap { line => line.split(" ")
    .map(word => Word(word, 1))
    .window(Time.of(5, SECONDS)).every(Time.of(1, SECONDS))
    .groupBy("word").sum("frequency")
}.print()
What is Apache Flink?

Figure: Apache Flink Overview
Batch and Streaming Engines

Batch only

Streaming only

Hybrid

Figure: Batch, streaming and hybrid data processing engines.
# Batch Comparison

**Figure:** Comparison between Hadoop, Spark And Flink.

<table>
<thead>
<tr>
<th></th>
<th>Hadoop</th>
<th>Spark</th>
<th>Flink</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>API</strong></td>
<td>low-level</td>
<td>high-level</td>
<td>high-level</td>
</tr>
<tr>
<td><strong>Data Transfer</strong></td>
<td>batch</td>
<td>batch</td>
<td>pipelined &amp; batch</td>
</tr>
<tr>
<td><strong>Memory Management</strong></td>
<td>disk-based</td>
<td>JVM-managed</td>
<td>Active managed</td>
</tr>
<tr>
<td><strong>Iterations</strong></td>
<td>file system cached</td>
<td>in-memory cached</td>
<td>streamed</td>
</tr>
<tr>
<td><strong>Fault tolerance</strong></td>
<td>task level</td>
<td>task level</td>
<td>job level</td>
</tr>
<tr>
<td><strong>Good at</strong></td>
<td>massive scale out</td>
<td>data exploration</td>
<td>heavy backend &amp; iterative jobs</td>
</tr>
<tr>
<td><strong>Libraries</strong></td>
<td>many external</td>
<td>built-in &amp; external</td>
<td>evolving built-in &amp; external</td>
</tr>
</tbody>
</table>
# Streaming Comparison

![Image showing Storm, Spark, and Flink logos]

<table>
<thead>
<tr>
<th></th>
<th>Storm</th>
<th>Spark</th>
<th>Flink</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Streaming</strong></td>
<td>“true”</td>
<td>mini batches</td>
<td>“true”</td>
</tr>
<tr>
<td><strong>API</strong></td>
<td>low-level</td>
<td>high-level</td>
<td>high-level</td>
</tr>
<tr>
<td><strong>Fault tolerance</strong></td>
<td>tuple-level ACKs</td>
<td>RDD-based (lineage)</td>
<td>coarse checkpointing</td>
</tr>
<tr>
<td><strong>State</strong></td>
<td>not built-in</td>
<td>external</td>
<td>internal</td>
</tr>
<tr>
<td><strong>Exactly once</strong></td>
<td>at least once</td>
<td>exactly once</td>
<td>exactly once</td>
</tr>
<tr>
<td><strong>Windowing</strong></td>
<td>not built-in</td>
<td>restricted</td>
<td>flexible</td>
</tr>
<tr>
<td><strong>Latency</strong></td>
<td>low</td>
<td>medium</td>
<td>low</td>
</tr>
<tr>
<td><strong>Throughput</strong></td>
<td>medium</td>
<td>high</td>
<td>high</td>
</tr>
</tbody>
</table>

**Figure:** Comparison between Storm, Spark And Flink.
Spark Motivation
Figure: IBM and Apache Spark
What is Apache Spark

Apache Spark is a fast and general engine for large-scale data processing.

- **Speed**: Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.
- **Ease of Use**: Write applications quickly in Java, Scala, Python, R.
- **Generality**: Combine SQL, streaming, and complex analytics.
- **Runs Everywhere**: Spark runs on Hadoop, Mesos, standalone, or in the cloud.

http://spark.apache.org/
Spark Ecosystem

Spark SQL
Spark Streaming
MLlib (machine learning)
GraphX (graph)

Apache Spark
Spark API

text_file = spark.textFile("hdfs://...")

text_file.flatMap(lambda line: line.split())
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a+b)

Word count in Spark’s Python API

val f = sc.textFile(hdfs://...”)

val wc = f.flatMap(l => l.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)

Word count in Spark’s Scala API
Apache Spark
Apache Spark Project

- Spark started as a research project at UC Berkeley
  - Matei Zaharia created Spark during his PhD
  - Ion Stoica was his advisor
- DataBricks is the Spark start-up, that has raised $46 million
Resilient Distributed Datasets (RDDs)

- An RDD is a fault-tolerant collection of elements that can be operated on in parallel.
- RDDs are created:
  - parallelizing an existing collection in your driver program, or
  - referencing a dataset in an external storage system
Spark API: Parallel Collections

```
data = [1, 2, 3, 4, 5]
distData = sc.parallelize(data)
```

Spark’s Python API

```
val data = Array(1, 2, 3, 4, 5)
val distData = sc.parallelize(data)
```

Spark’s Scala API

```
List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);
JavaRDD<Integer> distData = sc.parallelize(data);
```

Spark’s Java API
Spark API: External Datasets

```
>>> distFile = sc.textFile("data.txt")
```

Spark's Python API

```
scala> val distFile = sc.textFile("data.txt")
distFile: RDD[String] = MappedRDD@1d4cee08
```

Spark's Scala API

```
JavaRDD<String> distFile = sc.textFile("data.txt");
```

Spark's Java API
Spark API: RDD Operations

Spark's Python API

```python
lines = sc.textFile("data.txt")
lineLengths = lines.map(lambda s: len(s))
totalLength = lineLengths.reduce(lambda a, b: a + b)
```

Spark's Scala API

```scala
val lines = sc.textFile("data.txt")
val lineLengths = lines.map(s => s.length)
val totalLength = lineLengths.reduce((a, b) => a + b)
```

Spark's Java API

```java
JavaRDD<String> lines = sc.textFile("data.txt");
JavaRDD<Integer> lineLengths = lines.map(s -> s.length());
int totalLength = lineLengths.reduce((a, b) -> a + b);
```
Apache Spark Streaming

Spark Streaming is an extension of Spark that allows processing data stream using micro-batches of data.
Discretized Streams (DStreams)

- Discretized Stream or DStream represents a continuous stream of data,
  - either the input data stream received from source, or
  - the processed data stream generated by transforming the input stream.
- Internally, a DStream is represented by a continuous series of RDDs
Discretized Streams (DStreams)

- Any operation applied on a DStream translates to operations on the underlying RDDs.
Spark Streaming

```scala
def main() {
 val conf = new SparkConf().setMaster("local[2]").setAppName("WCount")
 val ssc = new StreamingContext(conf, Seconds(1))

 // Create a DStream that will connect to hostname:port, like localhost:9999
 val lines = ssc.socketTextStream("localhost", 9999)

 // Split each line into words
 val words = lines.flatMap(_.split(" "))

 // Count each word in each batch
 val pairs = words.map(word => (word, 1))
 val wordCounts = pairs.reduceByKey(_ + _)

 // Print the first ten elements of each RDD generated in this DStream to the console
 wordCounts.print()

 ssc.start() // Start the computation
 ssc.awaitTermination() // Wait for the computation to terminate
}
```
Spark SQL and DataFrames

- Spark SQL is a Spark module for structured data processing.
- It provides a programming abstraction called DataFrames and can also act as distributed SQL query engine.
- A DataFrame is a distributed collection of data organized into named columns. It is conceptually equivalent to a table in a relational database.
Spark Machine Learning Libraries

- **MLLib** contains the original API built on top of RDDs.
- **spark.ml** provides higher-level API built on top of DataFrames for constructing ML pipelines.

![Diagram of Spark ML Pipeline]

- **Pipeline (Estimator)**
- **Tokenizer** → **HashingTF** → **Logistic Regression**
- **Pipeline.fit()**
  - Raw text → Words → Feature vectors → **Logistic Regression Model**
Spark Machine Learning Libraries

- **MLLib** contains the original API built on top of RDDs.
- **spark.ml** provides higher-level API built on top of DataFrames for constructing ML pipelines.
Spark GraphX

- GraphX optimizes the representation of vertex and edge types when they are primitive data types.
- The **property graph** is a directed multigraph with user defined objects attached to each vertex and edge.

![Property Graph Diagram]

### Property Graph

- Vertex 3: Advisor
- Vertex 5: Franklin, Prof.
- Vertex 7: Jonzal, Postdoc
- Vertex 2: Istoica, Prof.

### Vertex Table

<table>
<thead>
<tr>
<th>Id</th>
<th>Property (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(xin, student)</td>
</tr>
<tr>
<td>7</td>
<td>(jonzal, postdoc)</td>
</tr>
<tr>
<td>5</td>
<td>(franklin, professor)</td>
</tr>
<tr>
<td>2</td>
<td>(istoica, professor)</td>
</tr>
</tbody>
</table>

### Edge Table

<table>
<thead>
<tr>
<th>SrcId</th>
<th>DstId</th>
<th>Property (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>Colleague</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Advisor</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>Colleague</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>PI</td>
</tr>
</tbody>
</table>
// Assume the SparkContext has already been constructed
val sc: SparkContext
// Create an RDD for the vertices
val users: RDD[(VertexId, (String, String))] =
  sc.parallelize(Array(((3L, "rxin", "student")), ((7L, "jgonzal", "postdoc")),
                     ((5L, "franklin", "prof")), ((2L, "istoica", "prof"))))
// Create an RDD for edges
val relationships: RDD[Edge[String]] =
  sc.parallelize(Array(Edge(3L, 7L, "collab"),
                      Edge(5L, 3L, "advisor"),
                      Edge(2L, 5L, "colleague"),
                      Edge(5L, 7L, "pi")))
// Define a default user in case there are relationship with missing user
val defaultUser = ("John Doe", "Missing")
// Build the initial Graph
val graph = Graph(users, relationships, defaultUser)
Apache Spark Summary

Apache Spark is a fast and general engine for large-scale data processing.

- **Speed**: Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.
- **Ease of Use**: Write applications quickly in Java, Scala, Python, R.
- **Generality**: Combine SQL, streaming, and complex analytics.
- **Runs Everywhere**: Spark runs on Hadoop, Mesos, standalone, or in the cloud.

http://spark.apache.org/
Apache Kafka
Apache Kafka is a fast, scalable, durable, and fault-tolerant publish-subscribe messaging system.
Components of Apache Kafka

- **topics**: categories that Kafka uses to maintain feeds of messages
- **producers**: processes that publish messages to a Kafka topic
- **consumers**: processes that subscribe to topics and process the feed of published messages
- **broker**: server that is part of the cluster that runs Kafka
The Kafka cluster maintains a partitioned log. Each partition is an ordered, immutable sequence of messages that is continually appended to a commit log. The messages in the partitions are each assigned a sequential id number called the offset that uniquely identifies each message within the partition.
Apache Storm
Apache S4 from Yahoo

A keyless event (EV) arrives at PE1 with quote: “I meant what I said and I said what I meant.”, Dr. Seuss

QuoteSplitterPE (PE1) counts unique words in Quote and emits events for each word.

EV	Quote
KEY | null
VAL | quote="I ...

EV	WordEvent
KEY | word="said"
VAL | count=2

PE1

EV	WordEvent
KEY | word="I"
VAL | count=4

WordCountPE (PE2–4) keeps total counts for each word across all quotes. Emits an event any time a count is updated.

PE2

EV	UpdatedCountEv
KEY | sortID=2
VAL | word="said count=9

PE3

EV	UpdatedCountEv
KEY | sortID=9
VAL | word="i count=35

SortPE (PE5–7) continuously sorts partial lists. Emits lists at periodic intervals.

PE5

PE6

PE7

MergePE (PE8) combines partial TopK lists and outputs final TopK list.

EV	PartialTopKEv
KEY | topk=1234
VAL | words=(w:cnt)

Not longer an active project.
Apache Storm

Stream, Spout, Bolt, Topology
Storm Abstractions:

- **Tuples**: an ordered list of elements.
- **Streams**: an unbounded sequence of tuples.
- **Spouts**: sources of streams in a computation.
- **Bolts**: process input streams and produce output streams. They can: run functions; filter, aggregate, or join data; or talk to databases.
- **Topologies**: the overall calculation, represented visually as a network of spouts and bolts.
Google Cloud DataFlow
There was need for an abstraction that hides many system-level details from the programmer.
There was need for an abstraction that hides many system-level details from the programmer.

**MapReduce** addresses this challenge by providing a simple abstraction for the developer, transparently handling most of the details behind the scenes in a scalable, robust, and efficient manner.
Google June 2014

What is using Google right now?
What is using Google right now?

“We don’t really use MapReduce anymore,” The company stopped using the system “years ago.”
What is using Google right now?

“We don’t really use MapReduce anymore,” The company stopped using the system “years ago.”

“Cloud Dataflow is the result of over a decade of experience in analytics,” “It will run faster and scale better than pretty much any other system out there.”
Google Cloud Data Flow

The processing model of Google Cloud Dataflow is based upon technology from

- **FlumeJava** (2010): Java library that makes it easy to develop, test, and run efficient data parallel pipelines.
Cloud Dataflow consists of:

- A set of SDKs that you use to define data processing jobs:
  - **PCollection**: specialized collection class to represent pipeline data.
  - **PTransforms**: powerful data transforms, generic frameworks that apply functions across an entire data set
  - **I/O APIs**: pipeline read and write data to and from a variety of formats and storage technologies.

- A Google Cloud Platform managed service:
  - Google Compute Engine VMs, to provide job workers.
  - Google Cloud Storage, for reading and writing data.
  - Google BigQuery, for reading and writing data.
The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt, Sam Whittle
Google
{takidau, robertwb, chambers, chernyak, rfernand, relax, sgmc, millsfd, fjp, cloude, samuelw}@google.com

ABSTRACT
Unbounded, unordered, global-scale datasets are increasingly common in day-to-day business (e.g. Web logs, mobile usage statistics, and sensor networks). At the same time, consumers of these datasets have evolved sophisticated requirements, such as event-time ordering and windowing by features of the data themselves, in addition to an insatiable hunger for faster answers. Meanwhile, practicality dictates that one can never fully optimize along all dimensions of correctness, latency, and cost for these types of input. As a result, data processing practitioners are left with the quandary of how to reconcile the tensions between these seemingly competing propositions, often resulting in disparate implementations and systems.

1. INTRODUCTION
Modern data processing is a complex and exciting field. From the scale enabled by MapReduce [16] and its successors (e.g. Hadoop [4], Pig [18], Hive [29], Spark [33]), to the vast body of work on streaming within the SQL community (e.g. query systems [1, 14, 15], windowing [22], data streams [24], time domains [28], semantic models [9]), to the more recent forays in low-latency processing such as Spark Streaming [34], MillWheel, and Storm [5], modern consumers of data wield remarkable amounts of power in shaping and taming massive-scale disorder into organized structures with far greater value. Yet, existing models and systems still fall short in a number of common use cases.

Consider an initial example: a streaming video provider

Figure: VLDB 2015
4. CONCLUSIONS

The future of data processing is unbounded data. Though bounded data will always have an important and useful place, it is semantically subsumed by its unbounded counterpart. Furthermore, the proliferation of unbounded data sets across modern business is staggering. At the same time, consumers of processed data grow savvier by the day, demanding powerful constructs like event-time ordering and unaligned windows. The models and systems that exist today serve as an excellent foundation on which to build the data processing tools of tomorrow, but we firmly believe that a shift in overall mindset is necessary to enable those tools to comprehensively address the needs of consumers of unbounded data.

**Figure:** Conclusions of the VLDB 2015 paper
Apache Beam
Apache Beam

• Apache Beam code can run in:
  • Apache Flink
  • Apache Spark
  • Google Cloud Dataflow

• Google Cloud Dataflow replaced MapReduce:
  • It is based on FlumeJava and MillWheel, a stream engine as Storm, Samza
  • It writes and reads to Google Pub/Sub, a service similar to Kafka
Architectures
Lambda Architecture

Figure: Nathan Marz
Kappa Architecture

Figure: Questioning the Lambda Architecture by Jay Kreps
Creating a Flink Adapter on Apache SAMOA

Apache Scalable Advanced Massive Online Analysis (SAMOA) is a platform for mining data streams with the use of distributed streaming Machine Learning algorithms, which can run on top of different Data Stream Processing Engines (DSPEs).

As depicted in Figure 20, Apache SAMOA offers the abstractions and APIs for developing new distributed ML algorithms to enrich the existing library of state-of-the-art algorithms [27, 28]. Moreover, SAMOA provides the possibility of integrating new DSPEs, allowing in that way the ML programmers to implement an algorithm once and run it in different DSPEs [28].

An adapter for integrating Apache Flink into Apache SAMOA was implemented in scope of this master thesis, with the main parts of its implementation being addressed in this section. With the use of our adapter, ML algorithms can be executed on top of Apache Flink. The implemented adapter will be used for the evaluation of the ML pipelines and HT algorithm variations.
Thanks!

@abifet