5TH INT. WORKSHOP ON MLG, FIRENZE, 2007

SPEEDING UP GRAPH EDIT DISTANCE COMPUTATION WITH A BIPARTITE HEURISTIC

Kaspar Riesen and Horst Bunke
riesen@iam.unibe.ch
Institute of Computer Science and Applied Mathematics
University of Bern, Switzerland
Outline

- Graph edit distance
- Tree search for graph edit distance
- Munkres’ algorithm
- Munkres’ algorithm as a heuristic for graph edit distance
- Experimental results
- Conclusions
Outline

- Graph edit distance
- Tree search for graph edit distance
- Munkres’ algorithm
- Munkres’ algorithm as a heuristic for graph edit distance
- Experimental results
- Conclusions

Main contribution: We provide a new heuristic for speeding up graph edit distance computation.
A graph \(g \) is defined by the 4-tuple \(g = (V, E, \mu, \nu) \), where

- \(V \) is the finite set of nodes
- \(E \subseteq V \times V \) is the set of edges
- \(\mu : V \rightarrow L \) is the node labeling function
- \(\nu : E \rightarrow L \) is the edge labeling function

\[
L = \{1, 2, 3, \ldots\}, \quad L = \mathbb{R}^n, \text{ or } L = \{\alpha, \beta, \gamma, \ldots\}.
\]
Graph Edit Distance 1/2

- Define the dissimilarity of graphs by the minimum amount of distortion that is needed to transform one graph into another.
- The edit operations e_i consist of deletions, insertions, and substitutions of nodes and edges.
Graph Edit Distance 1/2

- Define the dissimilarity of graphs by the minimum amount of distortion that is needed to transform one graph into another.
- The edit operations e_i consist of deletions, insertions, and substitutions of nodes and edges.
Graph Edit Distance 1/2

- Define the dissimilarity of graphs by the minimum amount of distortion that is needed to transform one graph into another.
- The edit operations e_i consist of deletions, insertions, and substitutions of nodes and edges.
Graph Edit Distance 1/2

- Define the dissimilarity of graphs by the minimum amount of distortion that is needed to transform one graph into another.
- The edit operations e_i consist of deletions, insertions, and substitutions of nodes and edges.
Graph Edit Distance 1/2

- Define the dissimilarity of graphs by the minimum amount of distortion that is needed to transform one graph into another.
- The edit operations e_i consist of deletions, insertions, and substitutions of nodes and edges.

![Diagram of graphs and edit operations](attachment:diagram.png)
Graph Edit Distance 1/2

- Define the dissimilarity of graphs by the minimum amount of distortion that is needed to transform one graph into another.
- The edit operations e_i consist of deletions, insertions, and substitutions of nodes and edges.

![Graph Edit Distance Diagram](image_url)
Graph Edit Distance 2/2

- Let $g_1 = (V_1, E_1, \mu_1, \nu_1)$ be the source graph and $g_2 = (V_2, E_2, \mu_2, \nu_2)$ be the target graph.
- The graph edit distance between g_1 and g_2 is defined by

$$d(g_1, g_2) = \min_{(e_1, \ldots, e_k) \in \Upsilon(g_1, g_2)} \sum_{i=1}^{k} c(e_i),$$

where $\Upsilon(g_1, g_2)$ denotes the set of edit paths transforming g_1 into g_2, and c denotes the edit cost function measuring the strength $c(e_i)$ of edit operation e_i.
Let $g_1 = (V_1, E_1, \mu_1, \nu_1)$ be the source graph and $g_2 = (V_2, E_2, \mu_2, \nu_2)$ be the target graph.

The graph edit distance between g_1 and g_2 is defined by

$$d(g_1, g_2) = \min_{(e_1, \ldots, e_k) \in \Upsilon(g_1, g_2)} \sum_{i=1}^{k} c(e_i),$$

where $\Upsilon(g_1, g_2)$ denotes the set of edit paths transforming g_1 into g_2, and c denotes the edit cost function measuring the strength $c(e_i)$ of edit operation e_i.

Graph edit distance provides us with a general dissimilarity model for graphs.
Applications of Graph Edit Distance

- Classifiers Applicable in the Graph Domain
 - k-NN classifier

- Edit Distance Based Graph Kernels
 - Trivial graph kernels in conjunction with SVM, e.g.
 \[\kappa(g, g') = \exp(-d(g, g')) \]
 - Graph kernels based on graph edit distance, e.g. Random Walk Edit Kernel [Neuhaus, 2006]
 - Graph embedding in real vector spaces by means of prototype selection [Riesen and Bunke, 2007]

- Graph Clustering
Complexity of Graph Edit Distance

- In contrast with exact graph matching algorithms, the nodes of the source graph can potentially be mapped to any node of the target graph.
- The computational complexity for edit distance is exponential in the number of nodes of the involved graphs. (For graphs with unique node labels the complexity is linear.)
- Graph edit distance is usually computed by a tree search algorithm which explores the space of all possible mappings of the nodes and edges of g_1 to the nodes and edges of g_2.
- Note that edit operations on edges are implied by edit operations on their adjacent nodes.
Tree Search

- Underlying search space is a tree.
- Search tree is constructed dynamically at runtime by creating successor nodes linked by edges to the currently considered node.
- A heuristic function is usually used to determine the node used for further expansion.
Tree Search Heuristics

- For each node p in the search tree $g(p) + h(p)$ is computed.
- $g(p)$: Cost of the partial edit path accumulated so far.
- $h(p)$: Estimated lower bound for the costs from p to a leaf node.

- $h(p) = 0$: efficient but inaccurate estimation.
- $h(p) =$ exact GED to leaf node: accurate estimation but inefficient.
Tree Search Heuristics

For each node \(p \) in the search tree, \(g(p) + h(p) \) is computed.

- \(g(p) \): Cost of the partial edit path accumulated so far.
- \(h(p) \): Estimated lower bound for the costs from \(p \) to a leaf node.

- \(h(p) = 0 \): Efficient but inaccurate estimation.
- \(h(p) \) = exact GED to leaf node: Accurate estimation but inefficient.
- How do we estimate a lower bound of the future cost efficiently and accurately?
The Assignment Problem 1/2

- Find an optimal assignment of n elements of a set $S_1 = \{u_1, \ldots, u_n\}$ to n elements of a set $S_2 = \{v_1, \ldots, v_n\}$.
- Let c_{ij} be the costs of the assignment $(u_i \rightarrow v_j)$.
- The optimal assignment is a permutation $p = (p_1, \ldots, p_n)$ of the integers $1, \ldots, n$ that minimizes $\sum_{i=1}^{n} c_{ip_i}$.
The Assignment Problem 2/2

- Given the \(n \times n \) matrix \((c_{ij})\) of real numbers corresponding to the assignment ratings.

- The assignment problem can be stated as finding a set of \(n \) independent elements of \((c_{ij})\) such that the sum of these elements is minimum.

\[
\begin{array}{c|c|c|c}
\hline
p & \sum_{i=1}^{n} c_{ip} & 1 & 2 & 3 \\
\hline
1 & 2 & 3 & 7 \\
2 & 1 & 3 & 6 \\
3 & 1 & 2 & 8 \\
1 & 3 & 2 & 6 \\
3 & 2 & 1 & 7 \\
2 & 3 & 1 & 10 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\hline
1 & 2 & 3 \\
2 & 4 & 3 \\
3 & 2 & 2 \\
\hline
\end{array}
\]
Munkres’ Algorithm

- Munkres’ algorithm finds the best, i.e. the minimum cost, assignment in $O(n^3)$ time.
- It finds an $n \times n$ matrix (b_{ij}) equivalent to the initial one (a_{ij}) having n independent zero elements.

\[
\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 3 \\
3 & 2 & 2 \\
\end{array}
\begin{array}{ccc}
0 & 1 & 2 \\
0 & 2 & 1 \\
1 & 0 & 0 \\
\end{array}
\begin{array}{ccc}
0^* & 1 & 2 \\
0 & 2 & 1 \\
1 & 0^* & 0 \\
\end{array}
\begin{array}{ccc}
0 & 0^* & 1 \\
0^* & 1 & 0 \\
2 & 0 & 0^* \\
\end{array}
\]

\[c_{11}, c_{12}, c_{33}\]
Munkres’ Algorithm as a Heuristic

- The problem of estimating a lower bound \(h(p) \) for the costs from the current node \(p \) to a leaf node can be seen as an assignment problem:
- How can one assign the unprocessed nodes of graph \(g_1 \) to the unprocessed nodes of \(g_2 \) such that the resulting edit costs are minimal?
Node Cost Matrix

- \(V_1 = \{u_1, \ldots, u_n\} \) and \(V_2 = \{v_1, \ldots, v_m\} \) are the unprocessed nodes of \(g_1 \) and \(g_2 \). Define an \((n + m) \times (n + m)\) node cost matrix \(C_n \).
- The left upper corner represents the costs of all possible node substitutions.
- The diagonal of the right/left upper/bottom corner represents the costs of all possible node deletions/insertions.
Bipartite Heuristic

- We construct an edge cost matrix C_e analogously.
- For each open node p in the search tree we run Munkres algorithm twice: Once with C_n and once with C_e.
- The accumulated minimum cost of both assignments serves us as a lower bound for the future costs to reach a leaf node.
- $h(p) = \text{Munkres}(C_n) + \text{Munkres}(C_e)$.
Experimental Setup

- We use four different graph datasets: *Letter, Image, Fingerprint, and Molecule*.
- We compute the edit distance between graphs with and without bipartite heuristic.
- We measure the mean computation time and the mean number of open paths in the search tree during the graph matching process.
Letter Dataset

- Graphs representing capital letter line drawings, 15 classes, 562,500 matchings, $\emptyset|V| = 4.6$, $\emptyset|E| = 4.5$

```
Method    Time [ms]    OPEN
Plain-A*  465          478
BP-A*     14           72
```
Image Dataset

- Graphs representing images, 5 classes (city, countryside, people, snowy, streets), 26,244 matchings, $\emptyset |V| = 2.7$, $\emptyset |E| = 2.4$

<table>
<thead>
<tr>
<th>Method</th>
<th>Time [ms]</th>
<th>OPEN</th>
<th>OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain-A*</td>
<td>0.5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>BP-A*</td>
<td>0.5</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Molecule Dataset

- Graphs representing molecules, 2 classes (active and inactive), 21,300 matchings, $\emptyset |V| = 5.5$, $\emptyset |E| = 4.7$

<table>
<thead>
<tr>
<th>Method</th>
<th>Time [ms]</th>
<th>OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain-A*</td>
<td>3799</td>
<td>2195</td>
</tr>
<tr>
<td>BP-A*</td>
<td>2</td>
<td>18</td>
</tr>
</tbody>
</table>
Fingerprint Dataset

- Graphs representing fingerprint images, 4 classes (arch, left loop, right loop, whorl), 65,025 matchings, $\emptyset|V| = 5.4$, $\emptyset|E| = 4.4$

<table>
<thead>
<tr>
<th>Method</th>
<th>Time [ms]</th>
<th>OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain-A*</td>
<td>6140</td>
<td>2465</td>
</tr>
<tr>
<td>BP-A*</td>
<td>374</td>
<td>507</td>
</tr>
</tbody>
</table>
Summary

- Thanks to the bipartite heuristic we can achieve significant speed-ups for *exact* graph edit distance.
- Further speed-ups can be achieved if we resort to *suboptimal* algorithms.
Summary

- Thanks to the bipartite heuristic we can achieve significant speed-ups for \textit{exact} graph edit distance.
- Further speed-ups can be achieved if we resort to \textit{suboptimal} algorithms.
- Transform the bipartite heuristic $h(p)$ into a suboptimal graph matching procedure.
• Define node cost matrix for whole graphs g_1 and g_2.
Fast Suboptimal Edit Distance 2/2

- Munkres’ algorithm finds the optimal node assignment by considering node operations or the local structure only.
- The implied edge operations are added at the end of the computation.
- Consequently, the edit distance found by Munkres’ algorithm need not necessarily correspond to the exact edit distance.
- However, a significant speed-up can be expected.
• Munkres’ algorithm finds the optimal node assignment by considering node operations or the local structure only.
• The implied edge operations are added at the end of the computation.
• Consequently, the edit distance found by Munkres’ algorithm need not necessarily correspond to the exact edit distance.
• However, a significant speed-up can be expected.
• **Future Work:** Find out whether or not the suboptimal distance remains sufficiently accurate for pattern recognition and machine learning applications.
Conclusions

- We propose a new heuristic based on Munkres’ algorithm for speeding up graph edit distance.
- Our heuristic finds an optimal node and an optimal edge assignment for the unprocessed nodes and edges of both graphs in polynomial time.
- Our heuristic helps in speeding up exact graph edit distance substantially.
- The proposed heuristic can also be used for fast suboptimal graph matching.