
1

Beam Search forTop-BDecodingin Bi-RNNs

Deep Learning Summer School, Montreal, CA

Qing Sun DhruvBatra



2

Image captioning
[Karpathyet al, CVPR2015]

but effectiveextension that additionally conditions the gen-

erative process on the content of an input image. More for-

mally, during training our Multimodal RNN takestheimage

pixels I and a sequence of input vectors (x1, . . . , xT ). It

then computes asequence of hidden states (h1, . . . , ht ) and

asequenceof outputs (y1, . . . , yt ) by iterating thefollowing

recurrence relation for t = 1 to T :

bv = Whi [CNNṉc
(I )] (13)

ht = f (Whx x t + Whh htī1 + bh + (t = 1) bv ) (14)

yt = sof tmax(Woh ht + bo). (15)

In theequations above, Whi , Whx , Whh , Woh , x i and bh , bo

are learnable parameters, and CNNṉc
(I ) is the last layer of

a CNN. The output vector yt holds the (unnormalized) log

probabilities of words in the dictionary and one additional

dimension for a special END token. Note that we provide

the image context vector bv to the RNN only at theýrst

iteration, which we found to work better than at each time

step. In practice we also found that it can help to also pass

both bv , (Whx x t ) through the activation function. A typical

size of the hidden layer of the RNN is 512 neurons.

RNN training. TheRNN istrained to combineaword (x t ),

the previous context (htī1) to predict the next word (yt ).

We condition theRNNôs predictions on the image informa-

tion (bv ) via bias interactions on theýrststep. The training

proceedsasfollows(refer to Figure4): Weset h0 = ~0, x1 to

aspecial START vector, and the desired label y1 as theýrst

word in the sequence. Analogously, we set x2 to the word

vector of theýrstword and expect the network to predict

the second word, etc. Finally, on the last step when xT rep-

resents the last word, the target label isset to aspecial END

token. The cost function is to maximize the log probability

assigned to the target labels (i.e. Softmaxclassiýer).

RNN at test time. To predict a sentence, we compute the

image representation bv , set h0 = 0, x1 to the START vec-

tor and compute the distribution over theýrstword y1. We

sample a word from the distribution (or pick the argmax),

set its embedding vector as x2, and repeat this process until

theEND token isgenerated. In practice wefound that beam

search (e.g. beam size 7) can improve results.

3.3. Optimization

WeuseSGD with mini-batches of 100 image-sentence pairs

and momentum of 0.9 to optimize thealignment model. We

cross-validate the learning rate and the weight decay. We

also use dropout regularization in all layers except in the

recurrent layers [59] and clip gradients elementwise at 5

(important). The generative RNN is more difýcultto op-

timize, party due to the word frequency disparity between

rarewordsand common words(e.g.òaòor theEND token).

We achieved the best results using RMSprop [52], which is

an adaptive step size method that scales the update of each

weight by a running average of its gradient norm.

Figure 4. Diagram of our multimodal Recurrent Neural Network

generativemodel. The RNN takesa word, the context from previ-

ous time steps anddeýnesa distribution over the next word in the

sentence. TheRNN isconditioned on the imageinformation at the

ýrsttime step. START and END are special tokens.

4. Exper iments

Datasets. We use the Flickr8K [21], Flickr30K [58] and

MSCOCO [37] datasets in our experiments. These datasets

contain 8,000, 31,000 and 123,000 images respectively

and each is annotated with 5 sentences using Amazon

Mechanical Turk. For Flickr8K and Flickr30K, we use

1,000 images for validation, 1,000 for testing and the rest

for training (consistent with [21, 24]). For MSCOCO we

use 5,000 images for both validation and testing.

Data Preprocessing. We convert all sentences to lower-

case, discard non-alphanumeric characters. Weýlterwords

to those that occur at least 5 times in the training set,

which results in 2538, 7414, and 8791 words for Flickr8k,

Flickr30K, and MSCOCO datasets respectively.

4.1. Image-Sentence Alignment Evaluation

Weýrstinvestigatethequality of theinferred text and image

alignments with ranking experiments. We consider a with-

held set of images and sentences and retrieve items in one

modality given a query from the other by sorting based on

the image-sentence score Sk l (Section 3.1.3). Wereport the

median rank of theclosest ground truth result in the list and

Recall@K, which measures the fraction of times a correct

item wasfound among the top K results. Theresult of these

experiments can befound in Table1, and example retrievals

in Figure 5. Wenow highlight some of the takeaways.

Our full model outperforms previous work. First, our

full model (ñOurmodel: BRNNò)outperforms Socher et

al. [49] who trained with a similar loss but used a single

image representation and a Recursive Neural Network over

the sentence. A similar loss was adopted by Kiros et al.

[25], who use an LSTM [20] to encode sentences. We list

their performance with a CNN that is equivalent in power

(AlexNet [28]) to the one used in this work, though simi-

lar to [54] they outperform our model with amorepowerful

CNN (VGGNet [47], GoogLeNet [51]). ñDeFragòare the

results reported by Karpathy et al. [24]. Since we use dif-

ferent word vectors, dropout for regularization and different

cross-validation ranges and larger embedding sizes, we re-

implemented their loss for a fair comparison(ñOurimple-



2

Image captioning
[Karpathyet al, CVPR2015]

but effectiveextension that additionally conditions the gen-

erative process on the content of an input image. More for-

mally, during training our Multimodal RNN takestheimage

pixels I and a sequence of input vectors (x1, . . . , xT ). It

then computes asequence of hidden states (h1, . . . , ht ) and

asequenceof outputs (y1, . . . , yt ) by iterating thefollowing

recurrence relation for t = 1 to T :

bv = Whi [CNNṉc
(I )] (13)

ht = f (Whx x t + Whh htī1 + bh + (t = 1) bv ) (14)

yt = sof tmax(Woh ht + bo). (15)

In theequations above, Whi , Whx , Whh , Woh , x i and bh , bo

are learnable parameters, and CNNṉc
(I ) is the last layer of

a CNN. The output vector yt holds the (unnormalized) log

probabilities of words in the dictionary and one additional

dimension for a special END token. Note that we provide

the image context vector bv to the RNN only at theýrst

iteration, which we found to work better than at each time

step. In practice we also found that it can help to also pass

both bv , (Whx x t ) through the activation function. A typical

size of the hidden layer of the RNN is 512 neurons.

RNN training. TheRNN istrained to combineaword (x t ),

the previous context (htī1) to predict the next word (yt ).

We condition theRNNôs predictions on the image informa-

tion (bv ) via bias interactions on theýrststep. The training

proceedsasfollows(refer to Figure4): Weset h0 = ~0, x1 to

aspecial START vector, and the desired label y1 as theýrst

word in the sequence. Analogously, we set x2 to the word

vector of theýrstword and expect the network to predict

the second word, etc. Finally, on the last step when xT rep-

resents the last word, the target label isset to aspecial END

token. The cost function is to maximize the log probability

assigned to the target labels (i.e. Softmaxclassiýer).

RNN at test time. To predict a sentence, we compute the

image representation bv , set h0 = 0, x1 to the START vec-

tor and compute the distribution over theýrstword y1. We

sample a word from the distribution (or pick the argmax),

set its embedding vector as x2, and repeat this process until

theEND token isgenerated. In practice wefound that beam

search (e.g. beam size 7) can improve results.

3.3. Optimization

WeuseSGD with mini-batches of 100 image-sentence pairs

and momentum of 0.9 to optimize thealignment model. We

cross-validate the learning rate and the weight decay. We

also use dropout regularization in all layers except in the

recurrent layers [59] and clip gradients elementwise at 5

(important). The generative RNN is more difýcultto op-

timize, party due to the word frequency disparity between

rarewordsand common words(e.g.òaòor theEND token).

We achieved the best results using RMSprop [52], which is

an adaptive step size method that scales the update of each

weight by a running average of its gradient norm.

Figure 4. Diagram of our multimodal Recurrent Neural Network

generativemodel. The RNN takesa word, the context from previ-

ous time steps anddeýnesa distribution over the next word in the

sentence. TheRNN isconditioned on the imageinformation at the

ýrsttime step. START and END are special tokens.

4. Exper iments

Datasets. We use the Flickr8K [21], Flickr30K [58] and

MSCOCO [37] datasets in our experiments. These datasets

contain 8,000, 31,000 and 123,000 images respectively

and each is annotated with 5 sentences using Amazon

Mechanical Turk. For Flickr8K and Flickr30K, we use

1,000 images for validation, 1,000 for testing and the rest

for training (consistent with [21, 24]). For MSCOCO we

use 5,000 images for both validation and testing.

Data Preprocessing. We convert all sentences to lower-

case, discard non-alphanumeric characters. Weýlterwords

to those that occur at least 5 times in the training set,

which results in 2538, 7414, and 8791 words for Flickr8k,

Flickr30K, and MSCOCO datasets respectively.

4.1. Image-Sentence Alignment Evaluation

Weýrstinvestigatethequality of theinferred text and image

alignments with ranking experiments. We consider a with-

held set of images and sentences and retrieve items in one

modality given a query from the other by sorting based on

the image-sentence score Sk l (Section 3.1.3). Wereport the

median rank of theclosest ground truth result in the list and

Recall@K, which measures the fraction of times a correct

item wasfound among the top K results. Theresult of these

experiments can befound in Table1, and example retrievals

in Figure 5. Wenow highlight some of the takeaways.

Our full model outperforms previous work. First, our

full model (ñOurmodel: BRNNò)outperforms Socher et

al. [49] who trained with a similar loss but used a single

image representation and a Recursive Neural Network over

the sentence. A similar loss was adopted by Kiros et al.

[25], who use an LSTM [20] to encode sentences. We list

their performance with a CNN that is equivalent in power

(AlexNet [28]) to the one used in this work, though simi-

lar to [54] they outperform our model with amorepowerful

CNN (VGGNet [47], GoogLeNet [51]). ñDeFragòare the

results reported by Karpathy et al. [24]. Since we use dif-

ferent word vectors, dropout for regularization and different

cross-validation ranges and larger embedding sizes, we re-

implemented their loss for a fair comparison(ñOurimple-

Visual Question Answering
[Antol et al, ICCV 2015]



2

Image captioning
[Karpathyet al, CVPR2015]

but effectiveextension that additionally conditions the gen-

erative process on the content of an input image. More for-

mally, during training our Multimodal RNN takestheimage

pixels I and a sequence of input vectors (x1, . . . , xT ). It

then computes asequence of hidden states (h1, . . . , ht ) and

asequenceof outputs (y1, . . . , yt ) by iterating thefollowing

recurrence relation for t = 1 to T :

bv = Whi [CNNṉc
(I )] (13)

ht = f (Whx x t + Whh htī1 + bh + (t = 1) bv ) (14)

yt = sof tmax(Woh ht + bo). (15)

In theequations above, Whi , Whx , Whh , Woh , x i and bh , bo

are learnable parameters, and CNNṉc
(I ) is the last layer of

a CNN. The output vector yt holds the (unnormalized) log

probabilities of words in the dictionary and one additional

dimension for a special END token. Note that we provide

the image context vector bv to the RNN only at theýrst

iteration, which we found to work better than at each time

step. In practice we also found that it can help to also pass

both bv , (Whx x t ) through the activation function. A typical

size of the hidden layer of the RNN is 512 neurons.

RNN training. TheRNN istrained to combineaword (x t ),

the previous context (htī1) to predict the next word (yt ).

We condition theRNNôs predictions on the image informa-

tion (bv ) via bias interactions on theýrststep. The training

proceedsasfollows(refer to Figure4): Weset h0 = ~0, x1 to

aspecial START vector, and the desired label y1 as theýrst

word in the sequence. Analogously, we set x2 to the word

vector of theýrstword and expect the network to predict

the second word, etc. Finally, on the last step when xT rep-

resents the last word, the target label isset to aspecial END

token. The cost function is to maximize the log probability

assigned to the target labels (i.e. Softmaxclassiýer).

RNN at test time. To predict a sentence, we compute the

image representation bv , set h0 = 0, x1 to the START vec-

tor and compute the distribution over theýrstword y1. We

sample a word from the distribution (or pick the argmax),

set its embedding vector as x2, and repeat this process until

theEND token isgenerated. In practice wefound that beam

search (e.g. beam size 7) can improve results.

3.3. Optimization

WeuseSGD with mini-batches of 100 image-sentence pairs

and momentum of 0.9 to optimize thealignment model. We

cross-validate the learning rate and the weight decay. We

also use dropout regularization in all layers except in the

recurrent layers [59] and clip gradients elementwise at 5

(important). The generative RNN is more difýcultto op-

timize, party due to the word frequency disparity between

rarewordsand common words(e.g.òaòor theEND token).

We achieved the best results using RMSprop [52], which is

an adaptive step size method that scales the update of each

weight by a running average of its gradient norm.

Figure 4. Diagram of our multimodal Recurrent Neural Network

generativemodel. The RNN takesa word, the context from previ-

ous time steps anddeýnesa distribution over the next word in the

sentence. TheRNN isconditioned on the imageinformation at the

ýrsttime step. START and END are special tokens.

4. Exper iments

Datasets. We use the Flickr8K [21], Flickr30K [58] and

MSCOCO [37] datasets in our experiments. These datasets

contain 8,000, 31,000 and 123,000 images respectively

and each is annotated with 5 sentences using Amazon

Mechanical Turk. For Flickr8K and Flickr30K, we use

1,000 images for validation, 1,000 for testing and the rest

for training (consistent with [21, 24]). For MSCOCO we

use 5,000 images for both validation and testing.

Data Preprocessing. We convert all sentences to lower-

case, discard non-alphanumeric characters. Weýlterwords

to those that occur at least 5 times in the training set,

which results in 2538, 7414, and 8791 words for Flickr8k,

Flickr30K, and MSCOCO datasets respectively.

4.1. Image-Sentence Alignment Evaluation

Weýrstinvestigatethequality of theinferred text and image

alignments with ranking experiments. We consider a with-

held set of images and sentences and retrieve items in one

modality given a query from the other by sorting based on

the image-sentence score Sk l (Section 3.1.3). Wereport the

median rank of theclosest ground truth result in the list and

Recall@K, which measures the fraction of times a correct

item wasfound among the top K results. Theresult of these

experiments can befound in Table1, and example retrievals

in Figure 5. Wenow highlight some of the takeaways.

Our full model outperforms previous work. First, our

full model (ñOurmodel: BRNNò)outperforms Socher et

al. [49] who trained with a similar loss but used a single

image representation and a Recursive Neural Network over

the sentence. A similar loss was adopted by Kiros et al.

[25], who use an LSTM [20] to encode sentences. We list

their performance with a CNN that is equivalent in power

(AlexNet [28]) to the one used in this work, though simi-

lar to [54] they outperform our model with amorepowerful

CNN (VGGNet [47], GoogLeNet [51]). ñDeFragòare the

results reported by Karpathy et al. [24]. Since we use dif-

ferent word vectors, dropout for regularization and different

cross-validation ranges and larger embedding sizes, we re-

implemented their loss for a fair comparison(ñOurimple-

Visual Question Answering
[Antol et al, ICCV 2015]

Machine Translation
[IIyaSutskeveret al, NIPS 2014]



Encoder vs. Decoder

3



Encoder vs. Decoder

3

How



Encoder vs. Decoder

3

How many



Encoder vs. Decoder

3

How many horses



Encoder vs. Decoder

3

How many horses are



Encoder vs. Decoder

3

How many horses are images?



Encoder vs. Decoder

3

How many horses are images?



Encoder vs. Decoder

3

How many horses are images?



Encoder vs. Decoder

3

How many horses are images?

Two



Encoder vs. Decoder

3

How many horses are images?

Two

Two

horses



Encoder vs. Decoder

3

How many horses are images?

Two

Two

horses

horses

are



Encoder vs. Decoder

3

How many horses are images?

Two

Two

horses

horses

are

are

standing



Encoder vs. Decoder

3

How many horses are images?

Two

Two

horses

horses

are

are

standing

eating

food



4

Image captioning
[Karpathy, etal, CVPR 2015]

but effectiveextension that additionally conditions the gen-

erative process on the content of an input image. More for-

mally, during training our Multimodal RNN takestheimage

pixels I and a sequence of input vectors (x1, . . . , xT ). It

then computes asequence of hidden states (h1, . . . , ht ) and

asequenceof outputs (y1, . . . , yt ) by iterating thefollowing

recurrence relation for t = 1 to T :

bv = Whi [CNNṉc
(I )] (13)

ht = f (Whx x t + Whh htī1 + bh + (t = 1) bv ) (14)

yt = sof tmax(Woh ht + bo). (15)

In theequations above, Whi , Whx , Whh , Woh , x i and bh , bo

are learnable parameters, and CNNṉc
(I ) is the last layer of

a CNN. The output vector yt holds the (unnormalized) log

probabilities of words in the dictionary and one additional

dimension for a special END token. Note that we provide

the image context vector bv to the RNN only at theýrst

iteration, which we found to work better than at each time

step. In practice we also found that it can help to also pass

both bv , (Whx x t ) through the activation function. A typical

size of the hidden layer of the RNN is 512 neurons.

RNN training. TheRNN istrained to combineaword (x t ),

the previous context (htī1) to predict the next word (yt ).

We condition theRNNôs predictions on the image informa-

tion (bv ) via bias interactions on theýrststep. The training

proceedsasfollows(refer to Figure4): Weset h0 = ~0, x1 to

aspecial START vector, and the desired label y1 as theýrst

word in the sequence. Analogously, we set x2 to the word

vector of theýrstword and expect the network to predict

the second word, etc. Finally, on the last step when xT rep-

resents the last word, the target label isset to aspecial END

token. The cost function is to maximize the log probability

assigned to the target labels (i.e. Softmaxclassiýer).

RNN at test time. To predict a sentence, we compute the

image representation bv , set h0 = 0, x1 to the START vec-

tor and compute the distribution over theýrstword y1. We

sample a word from the distribution (or pick the argmax),

set its embedding vector as x2, and repeat this process until

theEND token isgenerated. In practice wefound that beam

search (e.g. beam size 7) can improve results.

3.3. Optimization

WeuseSGD with mini-batches of 100 image-sentence pairs

and momentum of 0.9 to optimize thealignment model. We

cross-validate the learning rate and the weight decay. We

also use dropout regularization in all layers except in the

recurrent layers [59] and clip gradients elementwise at 5

(important). The generative RNN is more difýcultto op-

timize, party due to the word frequency disparity between

rarewordsand common words(e.g.òaòor theEND token).

We achieved the best results using RMSprop [52], which is

an adaptive step size method that scales the update of each

weight by a running average of its gradient norm.

Figure 4. Diagram of our multimodal Recurrent Neural Network

generativemodel. The RNN takesa word, the context from previ-

ous time steps anddeýnesa distribution over the next word in the

sentence. TheRNN isconditioned on the imageinformation at the

ýrsttime step. START and END are special tokens.

4. Exper iments

Datasets. We use the Flickr8K [21], Flickr30K [58] and

MSCOCO [37] datasets in our experiments. These datasets

contain 8,000, 31,000 and 123,000 images respectively

and each is annotated with 5 sentences using Amazon

Mechanical Turk. For Flickr8K and Flickr30K, we use

1,000 images for validation, 1,000 for testing and the rest

for training (consistent with [21, 24]). For MSCOCO we

use 5,000 images for both validation and testing.

Data Preprocessing. We convert all sentences to lower-

case, discard non-alphanumeric characters. Weýlterwords

to those that occur at least 5 times in the training set,

which results in 2538, 7414, and 8791 words for Flickr8k,

Flickr30K, and MSCOCO datasets respectively.

4.1. Image-Sentence Alignment Evaluation

Weýrstinvestigatethequality of theinferred text and image

alignments with ranking experiments. We consider a with-

held set of images and sentences and retrieve items in one

modality given a query from the other by sorting based on

the image-sentence score Sk l (Section 3.1.3). Wereport the

median rank of theclosest ground truth result in the list and

Recall@K, which measures the fraction of times a correct

item wasfound among the top K results. Theresult of these

experiments can befound in Table1, and example retrievals

in Figure 5. Wenow highlight some of the takeaways.

Our full model outperforms previous work. First, our

full model (ñOurmodel: BRNNò)outperforms Socher et

al. [49] who trained with a similar loss but used a single

image representation and a Recursive Neural Network over

the sentence. A similar loss was adopted by Kiros et al.

[25], who use an LSTM [20] to encode sentences. We list

their performance with a CNN that is equivalent in power

(AlexNet [28]) to the one used in this work, though simi-

lar to [54] they outperform our model with amorepowerful

CNN (VGGNet [47], GoogLeNet [51]). ñDeFragòare the

results reported by Karpathy et al. [24]. Since we use dif-

ferent word vectors, dropout for regularization and different

cross-validation ranges and larger embedding sizes, we re-

implemented their loss for a fair comparison(ñOurimple-

Visual Question Answering
[Antol, etal, ICCV 2015]

Machine Translation
[IIyaSutskever, etal, NIPS 2014]



4

Image captioning
[Karpathy, etal, CVPR 2015]

but effectiveextension that additionally conditions the gen-

erative process on the content of an input image. More for-

mally, during training our Multimodal RNN takestheimage

pixels I and a sequence of input vectors (x1, . . . , xT ). It

then computes asequence of hidden states (h1, . . . , ht ) and

asequenceof outputs (y1, . . . , yt ) by iterating thefollowing

recurrence relation for t = 1 to T :

bv = Whi [CNNṉc
(I )] (13)

ht = f (Whx x t + Whh htī1 + bh + (t = 1) bv ) (14)

yt = sof tmax(Woh ht + bo). (15)

In theequations above, Whi , Whx , Whh , Woh , x i and bh , bo

are learnable parameters, and CNNṉc
(I ) is the last layer of

a CNN. The output vector yt holds the (unnormalized) log

probabilities of words in the dictionary and one additional

dimension for a special END token. Note that we provide

the image context vector bv to the RNN only at theýrst

iteration, which we found to work better than at each time

step. In practice we also found that it can help to also pass

both bv , (Whx x t ) through the activation function. A typical

size of the hidden layer of the RNN is 512 neurons.

RNN training. TheRNN istrained to combineaword (x t ),

the previous context (htī1) to predict the next word (yt ).

We condition theRNNôs predictions on the image informa-

tion (bv ) via bias interactions on theýrststep. The training

proceedsasfollows(refer to Figure4): Weset h0 = ~0, x1 to

aspecial START vector, and the desired label y1 as theýrst

word in the sequence. Analogously, we set x2 to the word

vector of theýrstword and expect the network to predict

the second word, etc. Finally, on the last step when xT rep-

resents the last word, the target label isset to aspecial END

token. The cost function is to maximize the log probability

assigned to the target labels (i.e. Softmaxclassiýer).

RNN at test time. To predict a sentence, we compute the

image representation bv , set h0 = 0, x1 to the START vec-

tor and compute the distribution over theýrstword y1. We

sample a word from the distribution (or pick the argmax),

set its embedding vector as x2, and repeat this process until

theEND token isgenerated. In practice wefound that beam

search (e.g. beam size 7) can improve results.

3.3. Optimization

WeuseSGD with mini-batches of 100 image-sentence pairs

and momentum of 0.9 to optimize thealignment model. We

cross-validate the learning rate and the weight decay. We

also use dropout regularization in all layers except in the

recurrent layers [59] and clip gradients elementwise at 5

(important). The generative RNN is more difýcultto op-

timize, party due to the word frequency disparity between

rarewordsand common words(e.g.òaòor theEND token).

We achieved the best results using RMSprop [52], which is

an adaptive step size method that scales the update of each

weight by a running average of its gradient norm.

Figure 4. Diagram of our multimodal Recurrent Neural Network

generativemodel. The RNN takesa word, the context from previ-

ous time steps anddeýnesa distribution over the next word in the

sentence. TheRNN isconditioned on the imageinformation at the

ýrsttime step. START and END are special tokens.

4. Exper iments

Datasets. We use the Flickr8K [21], Flickr30K [58] and

MSCOCO [37] datasets in our experiments. These datasets

contain 8,000, 31,000 and 123,000 images respectively

and each is annotated with 5 sentences using Amazon

Mechanical Turk. For Flickr8K and Flickr30K, we use

1,000 images for validation, 1,000 for testing and the rest

for training (consistent with [21, 24]). For MSCOCO we

use 5,000 images for both validation and testing.

Data Preprocessing. We convert all sentences to lower-

case, discard non-alphanumeric characters. Weýlterwords

to those that occur at least 5 times in the training set,

which results in 2538, 7414, and 8791 words for Flickr8k,

Flickr30K, and MSCOCO datasets respectively.

4.1. Image-Sentence Alignment Evaluation

Weýrstinvestigatethequality of theinferred text and image

alignments with ranking experiments. We consider a with-

held set of images and sentences and retrieve items in one

modality given a query from the other by sorting based on

the image-sentence score Sk l (Section 3.1.3). Wereport the

median rank of theclosest ground truth result in the list and

Recall@K, which measures the fraction of times a correct

item wasfound among the top K results. Theresult of these

experiments can befound in Table1, and example retrievals

in Figure 5. Wenow highlight some of the takeaways.

Our full model outperforms previous work. First, our

full model (ñOurmodel: BRNNò)outperforms Socher et

al. [49] who trained with a similar loss but used a single

image representation and a Recursive Neural Network over

the sentence. A similar loss was adopted by Kiros et al.

[25], who use an LSTM [20] to encode sentences. We list

their performance with a CNN that is equivalent in power

(AlexNet [28]) to the one used in this work, though simi-

lar to [54] they outperform our model with amorepowerful

CNN (VGGNet [47], GoogLeNet [51]). ñDeFragòare the

results reported by Karpathy et al. [24]. Since we use dif-

ferent word vectors, dropout for regularization and different

cross-validation ranges and larger embedding sizes, we re-

implemented their loss for a fair comparison(ñOurimple-

Visual Question Answering
[Antol, etal, ICCV 2015]

Machine Translation
[IIyaSutskever, etal, NIPS 2014]

Decoder



4

Image captioning
[Karpathy, etal, CVPR 2015]

but effectiveextension that additionally conditions the gen-

erative process on the content of an input image. More for-

mally, during training our Multimodal RNN takestheimage

pixels I and a sequence of input vectors (x1, . . . , xT ). It

then computes asequence of hidden states (h1, . . . , ht ) and

asequenceof outputs (y1, . . . , yt ) by iterating thefollowing

recurrence relation for t = 1 to T :

bv = Whi [CNNṉc
(I )] (13)

ht = f (Whx x t + Whh htī1 + bh + (t = 1) bv ) (14)

yt = sof tmax(Woh ht + bo). (15)

In theequations above, Whi , Whx , Whh , Woh , x i and bh , bo

are learnable parameters, and CNNṉc
(I ) is the last layer of

a CNN. The output vector yt holds the (unnormalized) log

probabilities of words in the dictionary and one additional

dimension for a special END token. Note that we provide

the image context vector bv to the RNN only at theýrst

iteration, which we found to work better than at each time

step. In practice we also found that it can help to also pass

both bv , (Whx x t ) through the activation function. A typical

size of the hidden layer of the RNN is 512 neurons.

RNN training. TheRNN istrained to combineaword (x t ),

the previous context (htī1) to predict the next word (yt ).

We condition theRNNôs predictions on the image informa-

tion (bv ) via bias interactions on theýrststep. The training

proceedsasfollows(refer to Figure4): Weset h0 = ~0, x1 to

aspecial START vector, and the desired label y1 as theýrst

word in the sequence. Analogously, we set x2 to the word

vector of theýrstword and expect the network to predict

the second word, etc. Finally, on the last step when xT rep-

resents the last word, the target label isset to aspecial END

token. The cost function is to maximize the log probability

assigned to the target labels (i.e. Softmaxclassiýer).

RNN at test time. To predict a sentence, we compute the

image representation bv , set h0 = 0, x1 to the START vec-

tor and compute the distribution over theýrstword y1. We

sample a word from the distribution (or pick the argmax),

set its embedding vector as x2, and repeat this process until

theEND token isgenerated. In practice wefound that beam

search (e.g. beam size 7) can improve results.

3.3. Optimization

WeuseSGD with mini-batches of 100 image-sentence pairs

and momentum of 0.9 to optimize thealignment model. We

cross-validate the learning rate and the weight decay. We

also use dropout regularization in all layers except in the

recurrent layers [59] and clip gradients elementwise at 5

(important). The generative RNN is more difýcultto op-

timize, party due to the word frequency disparity between

rarewordsand common words(e.g.òaòor theEND token).

We achieved the best results using RMSprop [52], which is

an adaptive step size method that scales the update of each

weight by a running average of its gradient norm.

Figure 4. Diagram of our multimodal Recurrent Neural Network

generativemodel. The RNN takesa word, the context from previ-

ous time steps anddeýnesa distribution over the next word in the

sentence. TheRNN isconditioned on the imageinformation at the

ýrsttime step. START and END are special tokens.

4. Exper iments

Datasets. We use the Flickr8K [21], Flickr30K [58] and

MSCOCO [37] datasets in our experiments. These datasets

contain 8,000, 31,000 and 123,000 images respectively

and each is annotated with 5 sentences using Amazon

Mechanical Turk. For Flickr8K and Flickr30K, we use

1,000 images for validation, 1,000 for testing and the rest

for training (consistent with [21, 24]). For MSCOCO we

use 5,000 images for both validation and testing.

Data Preprocessing. We convert all sentences to lower-

case, discard non-alphanumeric characters. Weýlterwords

to those that occur at least 5 times in the training set,

which results in 2538, 7414, and 8791 words for Flickr8k,

Flickr30K, and MSCOCO datasets respectively.

4.1. Image-Sentence Alignment Evaluation

Weýrstinvestigatethequality of theinferred text and image

alignments with ranking experiments. We consider a with-

held set of images and sentences and retrieve items in one

modality given a query from the other by sorting based on

the image-sentence score Sk l (Section 3.1.3). Wereport the

median rank of theclosest ground truth result in the list and

Recall@K, which measures the fraction of times a correct

item wasfound among the top K results. Theresult of these

experiments can befound in Table1, and example retrievals

in Figure 5. Wenow highlight some of the takeaways.

Our full model outperforms previous work. First, our

full model (ñOurmodel: BRNNò)outperforms Socher et

al. [49] who trained with a similar loss but used a single

image representation and a Recursive Neural Network over

the sentence. A similar loss was adopted by Kiros et al.

[25], who use an LSTM [20] to encode sentences. We list

their performance with a CNN that is equivalent in power

(AlexNet [28]) to the one used in this work, though simi-

lar to [54] they outperform our model with amorepowerful

CNN (VGGNet [47], GoogLeNet [51]). ñDeFragòare the

results reported by Karpathy et al. [24]. Since we use dif-

ferent word vectors, dropout for regularization and different

cross-validation ranges and larger embedding sizes, we re-

implemented their loss for a fair comparison(ñOurimple-

Visual Question Answering
[Antol, etal, ICCV 2015]

Machine Translation
[IIyaSutskever, etal, NIPS 2014]

Decoder

Encoder



4

Image captioning
[Karpathy, etal, CVPR 2015]

but effectiveextension that additionally conditions the gen-

erative process on the content of an input image. More for-

mally, during training our Multimodal RNN takestheimage

pixels I and a sequence of input vectors (x1, . . . , xT ). It

then computes asequence of hidden states (h1, . . . , ht ) and

asequenceof outputs (y1, . . . , yt ) by iterating thefollowing

recurrence relation for t = 1 to T :

bv = Whi [CNNṉc
(I )] (13)

ht = f (Whx x t + Whh htī1 + bh + (t = 1) bv ) (14)

yt = sof tmax(Woh ht + bo). (15)

In theequations above, Whi , Whx , Whh , Woh , x i and bh , bo

are learnable parameters, and CNNṉc
(I ) is the last layer of

a CNN. The output vector yt holds the (unnormalized) log

probabilities of words in the dictionary and one additional

dimension for a special END token. Note that we provide

the image context vector bv to the RNN only at theýrst

iteration, which we found to work better than at each time

step. In practice we also found that it can help to also pass

both bv , (Whx x t ) through the activation function. A typical

size of the hidden layer of the RNN is 512 neurons.

RNN training. TheRNN istrained to combineaword (x t ),

the previous context (htī1) to predict the next word (yt ).

We condition theRNNôs predictions on the image informa-

tion (bv ) via bias interactions on theýrststep. The training

proceedsasfollows(refer to Figure4): Weset h0 = ~0, x1 to

aspecial START vector, and the desired label y1 as theýrst

word in the sequence. Analogously, we set x2 to the word

vector of theýrstword and expect the network to predict

the second word, etc. Finally, on the last step when xT rep-

resents the last word, the target label isset to aspecial END

token. The cost function is to maximize the log probability

assigned to the target labels (i.e. Softmaxclassiýer).

RNN at test time. To predict a sentence, we compute the

image representation bv , set h0 = 0, x1 to the START vec-

tor and compute the distribution over theýrstword y1. We

sample a word from the distribution (or pick the argmax),

set its embedding vector as x2, and repeat this process until

theEND token isgenerated. In practice wefound that beam

search (e.g. beam size 7) can improve results.

3.3. Optimization

WeuseSGD with mini-batches of 100 image-sentence pairs

and momentum of 0.9 to optimize thealignment model. We

cross-validate the learning rate and the weight decay. We

also use dropout regularization in all layers except in the

recurrent layers [59] and clip gradients elementwise at 5

(important). The generative RNN is more difýcultto op-

timize, party due to the word frequency disparity between

rarewordsand common words(e.g.òaòor theEND token).

We achieved the best results using RMSprop [52], which is

an adaptive step size method that scales the update of each

weight by a running average of its gradient norm.

Figure 4. Diagram of our multimodal Recurrent Neural Network

generativemodel. The RNN takesa word, the context from previ-

ous time steps anddeýnesa distribution over the next word in the

sentence. TheRNN isconditioned on the imageinformation at the

ýrsttime step. START and END are special tokens.

4. Exper iments

Datasets. We use the Flickr8K [21], Flickr30K [58] and

MSCOCO [37] datasets in our experiments. These datasets

contain 8,000, 31,000 and 123,000 images respectively

and each is annotated with 5 sentences using Amazon

Mechanical Turk. For Flickr8K and Flickr30K, we use

1,000 images for validation, 1,000 for testing and the rest

for training (consistent with [21, 24]). For MSCOCO we

use 5,000 images for both validation and testing.

Data Preprocessing. We convert all sentences to lower-

case, discard non-alphanumeric characters. Weýlterwords

to those that occur at least 5 times in the training set,

which results in 2538, 7414, and 8791 words for Flickr8k,

Flickr30K, and MSCOCO datasets respectively.

4.1. Image-Sentence Alignment Evaluation

Weýrstinvestigatethequality of theinferred text and image

alignments with ranking experiments. We consider a with-

held set of images and sentences and retrieve items in one

modality given a query from the other by sorting based on

the image-sentence score Sk l (Section 3.1.3). Wereport the

median rank of theclosest ground truth result in the list and

Recall@K, which measures the fraction of times a correct

item wasfound among the top K results. Theresult of these

experiments can befound in Table1, and example retrievals

in Figure 5. Wenow highlight some of the takeaways.

Our full model outperforms previous work. First, our

full model (ñOurmodel: BRNNò)outperforms Socher et

al. [49] who trained with a similar loss but used a single

image representation and a Recursive Neural Network over

the sentence. A similar loss was adopted by Kiros et al.

[25], who use an LSTM [20] to encode sentences. We list

their performance with a CNN that is equivalent in power

(AlexNet [28]) to the one used in this work, though simi-

lar to [54] they outperform our model with amorepowerful

CNN (VGGNet [47], GoogLeNet [51]). ñDeFragòare the

results reported by Karpathy et al. [24]. Since we use dif-

ferent word vectors, dropout for regularization and different

cross-validation ranges and larger embedding sizes, we re-

implemented their loss for a fair comparison(ñOurimple-

Visual Question Answering
[Antol, etal, ICCV 2015]

Machine Translation
[IIyaSutskever, etal, NIPS 2014]

Decoder

Encoder

Encoder



4

Image captioning
[Karpathy, etal, CVPR 2015]

but effectiveextension that additionally conditions the gen-

erative process on the content of an input image. More for-

mally, during training our Multimodal RNN takestheimage

pixels I and a sequence of input vectors (x1, . . . , xT ). It

then computes asequence of hidden states (h1, . . . , ht ) and

asequenceof outputs (y1, . . . , yt ) by iterating thefollowing

recurrence relation for t = 1 to T :

bv = Whi [CNNṉc
(I )] (13)

ht = f (Whx x t + Whh htī1 + bh + (t = 1) bv ) (14)

yt = sof tmax(Woh ht + bo). (15)

In theequations above, Whi , Whx , Whh , Woh , x i and bh , bo

are learnable parameters, and CNNṉc
(I ) is the last layer of

a CNN. The output vector yt holds the (unnormalized) log

probabilities of words in the dictionary and one additional

dimension for a special END token. Note that we provide

the image context vector bv to the RNN only at theýrst

iteration, which we found to work better than at each time

step. In practice we also found that it can help to also pass

both bv , (Whx x t ) through the activation function. A typical

size of the hidden layer of the RNN is 512 neurons.

RNN training. TheRNN istrained to combineaword (x t ),

the previous context (htī1) to predict the next word (yt ).

We condition theRNNôs predictions on the image informa-

tion (bv ) via bias interactions on theýrststep. The training

proceedsasfollows(refer to Figure4): Weset h0 = ~0, x1 to

aspecial START vector, and the desired label y1 as theýrst

word in the sequence. Analogously, we set x2 to the word

vector of theýrstword and expect the network to predict

the second word, etc. Finally, on the last step when xT rep-

resents the last word, the target label isset to aspecial END

token. The cost function is to maximize the log probability

assigned to the target labels (i.e. Softmaxclassiýer).

RNN at test time. To predict a sentence, we compute the

image representation bv , set h0 = 0, x1 to the START vec-

tor and compute the distribution over theýrstword y1. We

sample a word from the distribution (or pick the argmax),

set its embedding vector as x2, and repeat this process until

theEND token isgenerated. In practice wefound that beam

search (e.g. beam size 7) can improve results.

3.3. Optimization

WeuseSGD with mini-batches of 100 image-sentence pairs

and momentum of 0.9 to optimize thealignment model. We

cross-validate the learning rate and the weight decay. We

also use dropout regularization in all layers except in the

recurrent layers [59] and clip gradients elementwise at 5

(important). The generative RNN is more difýcultto op-

timize, party due to the word frequency disparity between

rarewordsand common words(e.g.òaòor theEND token).

We achieved the best results using RMSprop [52], which is

an adaptive step size method that scales the update of each

weight by a running average of its gradient norm.

Figure 4. Diagram of our multimodal Recurrent Neural Network

generativemodel. The RNN takesa word, the context from previ-

ous time steps anddeýnesa distribution over the next word in the

sentence. TheRNN isconditioned on the imageinformation at the

ýrsttime step. START and END are special tokens.

4. Exper iments

Datasets. We use the Flickr8K [21], Flickr30K [58] and

MSCOCO [37] datasets in our experiments. These datasets

contain 8,000, 31,000 and 123,000 images respectively

and each is annotated with 5 sentences using Amazon

Mechanical Turk. For Flickr8K and Flickr30K, we use

1,000 images for validation, 1,000 for testing and the rest

for training (consistent with [21, 24]). For MSCOCO we

use 5,000 images for both validation and testing.

Data Preprocessing. We convert all sentences to lower-

case, discard non-alphanumeric characters. Weýlterwords

to those that occur at least 5 times in the training set,

which results in 2538, 7414, and 8791 words for Flickr8k,

Flickr30K, and MSCOCO datasets respectively.

4.1. Image-Sentence Alignment Evaluation

Weýrstinvestigatethequality of theinferred text and image

alignments with ranking experiments. We consider a with-

held set of images and sentences and retrieve items in one

modality given a query from the other by sorting based on

the image-sentence score Sk l (Section 3.1.3). Wereport the

median rank of theclosest ground truth result in the list and

Recall@K, which measures the fraction of times a correct

item wasfound among the top K results. Theresult of these

experiments can befound in Table1, and example retrievals

in Figure 5. Wenow highlight some of the takeaways.

Our full model outperforms previous work. First, our

full model (ñOurmodel: BRNNò)outperforms Socher et

al. [49] who trained with a similar loss but used a single

image representation and a Recursive Neural Network over

the sentence. A similar loss was adopted by Kiros et al.

[25], who use an LSTM [20] to encode sentences. We list

their performance with a CNN that is equivalent in power

(AlexNet [28]) to the one used in this work, though simi-

lar to [54] they outperform our model with amorepowerful

CNN (VGGNet [47], GoogLeNet [51]). ñDeFragòare the

results reported by Karpathy et al. [24]. Since we use dif-

ferent word vectors, dropout for regularization and different

cross-validation ranges and larger embedding sizes, we re-

implemented their loss for a fair comparison(ñOurimple-

Visual Question Answering
[Antol, etal, ICCV 2015]

Machine Translation
[IIyaSutskever, etal, NIPS 2014]

Decoder

Encoder

Encoder Decoder



Uni-RNNs vs. Bi-RNNs

5



Uni-RNNs vs. Bi-RNNs

5

ht+1

Yt+2

xt+1

ht-1

yt

xt-1

ht

Yt+1

xt

(a) Unidirectional RNNs



Uni-RNNs vs. Bi-RNNs

6

ht+1

Yt+2

xt+1

ht-1

yt

xt-1

ht

Yt+1

xt

(a) Unidirectional RNNs

Wy

P



Uni-RNNs vs. Bi-RNNs

7

ht+1

Yt+2

xt+1

ht-1

yt

xt-1

ht

Yt+1

xt

(a) Unidirectional RNNs

Wx

Wh



8

hf
thf

t-1 hf
t+1

yt-1 yt yt+1

xt+1xt-1 xt

(b) Bidirectional RNNs

ht+1

Yt+2

xt+1

ht-1

yt

xt-1

ht

Yt+1

xt

(a) Unidirectional RNNs

Wf
h



8

yt-1 yt yt+1

xt+1xt-1 xt

hb
thb

t-1 hb
t+1

(b) Bidirectional RNNs

ht+1

Yt+2

xt+1

ht-1

yt

xt-1

ht

Yt+1

xt

(a) Unidirectional RNNs

Wb
h



8

hf
thf

t-1 hf
t+1

yt-1 yt yt+1

xt+1xt-1 xt

hb
thb

t-1 hb
t+1

(b) Bidirectional RNNs

ht+1

Yt+2

xt+1

ht-1

yt

xt-1

ht

Yt+1

xt

(a) Unidirectional RNNs

Wf
h

Wb
h

p



Left-to-right Beam Search

9



Left-to-right Beam Search

9

A

The



Left-to-right Beam Search

9

A

The



Left-to-right Beam Search

10

A

table

plate

A

The



Left-to-right Beam Search

10

A

table

plate

A

The



Left-to-right Beam Search

11

A

with

topped

table

A

The



Left-to-right Beam Search

12

A

with

topped

a

with

table

A

The



Left-to-right Beam Search

13

A

topped

with

plates

bowlstable

A

The



14

hf
thf

t-1 hf
t+1

yt-1 yt yt+1

xt+1xt-1 xt

hb
thb

t-1 hb
t+1

(b) Bidirectional RNNs

ht+1

Yt+2

xt+1

ht-1

yt

xt-1

ht

Yt+1

xt

(a) Unidirectional RNNs

Wf
h

Wb
h

p

Left-to-right Beam Search



14

hf
thf

t-1 hf
t+1

yt-1 yt yt+1

xt+1xt-1 xt

hb
thb

t-1 hb
t+1

(b) Bidirectional RNNs

ht+1

Yt+2

xt+1

ht-1

yt

xt-1

ht

Yt+1

xt

(a) Unidirectional RNNs

Wf
h

Wb
h

p

Left-to-right Beam Search

Future variables



Inference in Bi-RNNs

15



Inference in Bi-RNNs

15

Fill-in-the-blank Image Captioning



Inference in Bi-RNNs

15

Fill-in-the-blank Image Captioning Visual Madlibs



Inference in Bi-RNNs

15

Fill-in-the-blank Image Captioning Visual Madlibs

Context Encoders: FeatureLearning by Inpainting

Deepak Pathak Philipp KrÌahenbÌuhl Jeff Donahue Trevor Darrell Alexei A. Efros
University of California, Berkeley

{ pat hak, phi l kr , j donahue, t r evor , ef r os } @cs. ber kel ey. edu

Abstract

Wepresent an unsupervised visual featurelearning algo-

rithm driven by context-based pixel prediction. By analogy

with auto-encoders, we propose Context Encodersïa con-

volutional neural network trained to generate the contents

of an arbitrary image region conditioned on its surround-

ings. In order to succeed at this task, context encoders

need to both understand the content of the entire image,

as well as produce a plausible hypothesis for the missing

part(s). When training context encoders, we have experi-

mented with both a standard pixel-wise reconstruction loss,

as well as a reconstruction plus an adversarial loss. The

latter produces much sharper results because it can better

handle multiple modes in the output. We found that a con-

text encoder learns a representation that captures not just

appearance but also the semantics of visual structures. We

quantitatively demonstrate the effectiveness of our learned

features for CNN pre-training onclassiýcation,detection,

and segmentation tasks. Furthermore, context encoderscan

beused for semantic inpainting tasks, either stand-alone or

as initialization for non-parametric methods.

1. Introduction

Our visual world is very diverse, yet highly structured,

and humans have an uncanny ability to make sense of this

structure. In this work, we explore whether state-of-the-art

computer vision algorithms can do the same. Consider the

image shown in Figure 1a. Although the center part of the

image is missing, most of us can easily imagine its content

from the surrounding pixels, without having ever seen that

exact scene. Some of us can even draw it, as shown on Fig-

ure1b. Thisability comes from thefact that natural images,

despite their diversity, arehighly structured (e.g. theregular

pattern of windows on the facade). We humans are able to

understand this structure and make visual predictions even

when seeing only parts of the scene. In this paper, we show

The supplementary material, trained models and code are available at

theauthorôs website.

(a) Input context (b) Human artist

(c) Context Encoder

(L 2 loss)

(d) Context Encoder

(L 2 + Adversarial loss)

Figure 1: Qualitative illustration of the task. Given an im-

age with a missing region (a), a human artist has no trouble

inpainting it (b). Automatic inpainting using our context

encoder trained with L2 reconstruction loss isshown in (c),

and using both L2 and adversarial losses in (d).

that it is possible to learn and predict this structure using

convolutional neural networks (CNNs), a class of models

that have recently shown success across a variety of image

understanding tasks.

Given an image with a missing region (e.g., Fig. 1a), we

train a convolutional neural network to regress to the miss-

ing pixel values (Fig. 1d). We call our model context en-

coder, as it consists of an encoder capturing the context of

an image into a compact latent feature representation and a

decoder which uses that representation to produce themiss-

ing image content. Thecontext encoder isclosely related to

autoencoders [3,20], as it shares a similar encoder-decoder

architecture. Autoencoders take an input image and try

1

Image Completion/Impainting



Inference in Bi-RNNs

15

Fill-in-the-blank Image Captioning Visual Madlibs

Context Encoders: FeatureLearning by Inpainting

Deepak Pathak Philipp KrÌahenbÌuhl Jeff Donahue Trevor Darrell Alexei A. Efros
University of California, Berkeley

{ pat hak, phi l kr , j donahue, t r evor , ef r os } @cs. ber kel ey. edu

Abstract

Wepresent an unsupervised visual featurelearning algo-

rithm driven by context-based pixel prediction. By analogy

with auto-encoders, we propose Context Encodersïa con-

volutional neural network trained to generate the contents

of an arbitrary image region conditioned on its surround-

ings. In order to succeed at this task, context encoders

need to both understand the content of the entire image,

as well as produce a plausible hypothesis for the missing

part(s). When training context encoders, we have experi-

mented with both a standard pixel-wise reconstruction loss,

as well as a reconstruction plus an adversarial loss. The

latter produces much sharper results because it can better

handle multiple modes in the output. We found that a con-

text encoder learns a representation that captures not just

appearance but also the semantics of visual structures. We

quantitatively demonstrate the effectiveness of our learned

features for CNN pre-training onclassiýcation,detection,

and segmentation tasks. Furthermore, context encoderscan

beused for semantic inpainting tasks, either stand-alone or

as initialization for non-parametric methods.

1. Introduction

Our visual world is very diverse, yet highly structured,

and humans have an uncanny ability to make sense of this

structure. In this work, we explore whether state-of-the-art

computer vision algorithms can do the same. Consider the

image shown in Figure 1a. Although the center part of the

image is missing, most of us can easily imagine its content

from the surrounding pixels, without having ever seen that

exact scene. Some of us can even draw it, as shown on Fig-

ure1b. Thisability comes from thefact that natural images,

despite their diversity, arehighly structured (e.g. theregular

pattern of windows on the facade). We humans are able to

understand this structure and make visual predictions even

when seeing only parts of the scene. In this paper, we show

The supplementary material, trained models and code are available at

theauthorôs website.

(a) Input context (b) Human artist

(c) Context Encoder

(L 2 loss)

(d) Context Encoder

(L 2 + Adversarial loss)

Figure 1: Qualitative illustration of the task. Given an im-

age with a missing region (a), a human artist has no trouble

inpainting it (b). Automatic inpainting using our context

encoder trained with L2 reconstruction loss isshown in (c),

and using both L2 and adversarial losses in (d).

that it is possible to learn and predict this structure using

convolutional neural networks (CNNs), a class of models

that have recently shown success across a variety of image

understanding tasks.

Given an image with a missing region (e.g., Fig. 1a), we

train a convolutional neural network to regress to the miss-

ing pixel values (Fig. 1d). We call our model context en-

coder, as it consists of an encoder capturing the context of

an image into a compact latent feature representation and a

decoder which uses that representation to produce themiss-

ing image content. Thecontext encoder isclosely related to

autoencoders [3,20], as it shares a similar encoder-decoder

architecture. Autoencoders take an input image and try

1

Image Completion/Impainting
Genome Sequencing



Inference in Bi-RNNs

15

Fill-in-the-blank Image Captioning Visual Madlibs

Context Encoders: FeatureLearning by Inpainting

Deepak Pathak Philipp KrÌahenbÌuhl Jeff Donahue Trevor Darrell Alexei A. Efros
University of California, Berkeley

{ pat hak, phi l kr , j donahue, t r evor , ef r os } @cs. ber kel ey. edu

Abstract

Wepresent an unsupervised visual featurelearning algo-

rithm driven by context-based pixel prediction. By analogy

with auto-encoders, we propose Context Encodersïa con-

volutional neural network trained to generate the contents

of an arbitrary image region conditioned on its surround-

ings. In order to succeed at this task, context encoders

need to both understand the content of the entire image,

as well as produce a plausible hypothesis for the missing

part(s). When training context encoders, we have experi-

mented with both a standard pixel-wise reconstruction loss,

as well as a reconstruction plus an adversarial loss. The

latter produces much sharper results because it can better

handle multiple modes in the output. We found that a con-

text encoder learns a representation that captures not just

appearance but also the semantics of visual structures. We

quantitatively demonstrate the effectiveness of our learned

features for CNN pre-training onclassiýcation,detection,

and segmentation tasks. Furthermore, context encoderscan

beused for semantic inpainting tasks, either stand-alone or

as initialization for non-parametric methods.

1. Introduction

Our visual world is very diverse, yet highly structured,

and humans have an uncanny ability to make sense of this

structure. In this work, we explore whether state-of-the-art

computer vision algorithms can do the same. Consider the

image shown in Figure 1a. Although the center part of the

image is missing, most of us can easily imagine its content

from the surrounding pixels, without having ever seen that

exact scene. Some of us can even draw it, as shown on Fig-

ure1b. Thisability comes from thefact that natural images,

despite their diversity, arehighly structured (e.g. theregular

pattern of windows on the facade). We humans are able to

understand this structure and make visual predictions even

when seeing only parts of the scene. In this paper, we show

The supplementary material, trained models and code are available at

theauthorôs website.

(a) Input context (b) Human artist

(c) Context Encoder

(L 2 loss)

(d) Context Encoder

(L 2 + Adversarial loss)

Figure 1: Qualitative illustration of the task. Given an im-

age with a missing region (a), a human artist has no trouble

inpainting it (b). Automatic inpainting using our context

encoder trained with L2 reconstruction loss isshown in (c),

and using both L2 and adversarial losses in (d).

that it is possible to learn and predict this structure using

convolutional neural networks (CNNs), a class of models

that have recently shown success across a variety of image

understanding tasks.

Given an image with a missing region (e.g., Fig. 1a), we

train a convolutional neural network to regress to the miss-

ing pixel values (Fig. 1d). We call our model context en-

coder, as it consists of an encoder capturing the context of

an image into a compact latent feature representation and a

decoder which uses that representation to produce themiss-

ing image content. Thecontext encoder isclosely related to

autoencoders [3,20], as it shares a similar encoder-decoder

architecture. Autoencoders take an input image and try

1

Image Completion/Impainting
Genome Sequencing



16

A girl and a dog are balancing ona wind board



16

A girl and a dog are balancing ona wind board



16

URNN-f: A girl and a dog are in the a wind board



16

URNN-b: A girl and sitting in the water with a wind board



16

BiRNN+BSCD: A girl and a dog are sitting on a windboard



17A girl in a room full of books wearinga long red tie



17A girl in a room full of books wearinga long red tie



17URNN-f: A girl in a dress shirt and tie standinga long red tie



17URNN-b: A girl in a woman is wearinga long red tie



17BiRNN+BSCD:A girl in a white dress shirt is holdinga long red tie



Inference in Bi-RNNs

18

Contributions:
Beam-based Top-B MAP Inference algorithm for Bi-RNNs 



Left-to-right BS in Uni-RNN-f

girl andA a wind boardA girl and a wind board

19



Left-to-right BS in Uni-RNN-f

girl andA a wind boardA girl and a wind board

19



Left-to-right BS in Uni-RNN-f

girl andA a wind boardA girl and a wind board

19



Left-to-right BS in Uni-RNN-f

girl andA a wind boardA girl and a wind board

19



Left-to-right BS in Uni-RNN-f

girl andA a wind boardA girl and a wind board

19



Left-to-right BS in Uni-RNN-f

girl andA a wind boardA girl and a wind board

19



Left-to-right BS in Uni-RNN-f

girl andA a wind boardA girl and a wind board

a

dog
are

in
the

19



Left-to-right BS in Uni-RNN-f

girl andA a wind boardA girl and a wind board

a

dog
are

in
the

board

on

a

19



Right-to-left BS in Uni-RNN-b

A girl and a wind boardA girl and a wind board

20



Right-to-left BS in Uni-RNN-b

A girl and a wind boardA girl and a wind board

20



Right-to-left BS in Uni-RNN-b

A girl and a wind boardA girl and a wind board

20



Right-to-left BS in Uni-RNN-b

A girl and a wind boardA girl and a wind board

20



Right-to-left BS in Uni-RNN-b

A girl and a wind boardA girl and a wind board

20



Right-to-left BS in Uni-RNN-b

A girl and a wind boardA girl and a wind board

20



Right-to-left BS in Uni-RNN-b

A girl and a wind boardA girl and a wind board

20



Right-to-left BS in Uni-RNN-b

A girl and a wind boardA girl and a wind board

sitting
in

the

water

with

20



Right-to-left BS in Uni-RNN-b

A girl and a wind boardA girl and a wind board

sitting
in

the

water

with

on

sitting

is

a girl

20



Beam-Search Coordinate Descent (BSCD) in Bi-RNNs

A girl and a wind board

Initializeforward & backwardbeamsusingclassicalBS

A girl and a wind board

21



A girl and a wind boardA girl and a wind board

Beam-Search Coordinate Descent (BSCD) in Bi-RNNs

22



A girl and a wind boardA girl and a wind board

Beam-Search Coordinate Descent (BSCD) in Bi-RNNs

23



A girl and a wind boardA girl and a wind board

Beam-Search Coordinate Descent (BSCD) in Bi-RNNs

24


