MACHINE LEARNING
WITH
TORCH + AUTOGRADE
MATERIAL DEVELOPED WITH
SOUMITH CHINTALA
HUGO LAROCHELLE
RYAN ADAMS
LUKE ALONSO
CLEMENT FARABET
FIRST HALF:
TORCH BASICS & OVERVIEW OF TRAINING NEURAL NETS

SECOND HALF:
AUTOMATIC DIFFERENTIATION AND TORCH-AUTOGRAD
An array programming library for Lua, looks a lot like NumPy and Matlab
WHAT IS **torch**?

- Interactive scientific computing framework in Lua

```
Strings, numbers, tables - a tiny introduction

In [ ]: a = 'hello'
In [ ]: print(a)
In [ ]: b = {}
In [ ]: b[1] = a
In [ ]: print(b)
In [ ]: b[2] = 30
In [ ]: for i=1,#b do -- the # operator is the length operator in Lua
        print(b[i])
end
```
WHAT IS \textit{torch}?

• 150+ Tensor functions
 • Linear algebra
 • Convolutions
 • Tensor manipulation
 • Narrow, index, mask, etc.
 • Logical operators

• Fully documented: https://github.com/torch/torch7/tree/master/doc
WHAT IS **torch**?

- Similar to Matlab / Python+Numpy
WHAT IS torch?

Lots of functions that can operate on tensors, all the basics, slicing, BLAS, LAPACK, cephes, rand

```python
# Scalar & tensor arithmetic
A = torch.eye(3)
b = 4
c = 2
print(A*b - c)

2  -2  -2
-2  2  -2
-2  -2  2
[torch.DoubleTensor of size 3x3]

# Max
print(torch.max(torch.FloatTensor([1,3,5])))
5

# Clamp
torch.clamp(torch.range(0,4), 0, 2)

0
1
2
2
2
[torch.DoubleTensor of size 5]
```
WHAT IS torch?

Lots of functions that can operate on tensors, all the basics, slicing, BLAS, LAPACK, cephes, rand

```python
-- Boolean fns
A = torch.range(1, 5)
print(torch.le(A, 3))

1
1
1
0
0
[torch.ByteTensor of size 5]
```
WHAT IS \textit{torch} ?

Lots of functions that can operate on tensors, all the basics, slicing, BLAS, LAPACK, cephes, rand

Special functions

```python
-- Special functions
require 'cephes'
print(cephes.gamma(0.5))
```

```
1.7724538509055
```

```
print(cephes.atan2(3,1))
```

```
1.2490457723983
```

http://deepmind.github.io/torch-cephes/
WHAT IS torch?

Lots of functions that can operate on tensors, all the basics, slicing, BLAS, LAPACK, cephes, rand

```python
-- Sampling from a distribution
require 'randomkit'
a = torch.zeros(10000)
randomkit.negative_binomial(a, 9, 0.3)

Plot = require 'itorch.Plot'
local p = Plot()
:p:histogram(a, 80, 1, 80)
:p:title("Histogram of Draws From Negative Binomial")
:p:draw();
```

Histogram of Draws From Negative Binomial
WHAT IS torch?

• Inline help

In [10]: ?torch.cmul
Out[10]: +++
[res] torch.cmul([res,] tensor1, tensor2)

Element-wise multiplication of tensor1 by tensor2.
The number of elements must match, but sizes do not matter.
> x = torch.Tensor(2, 2):fill(2)
> y = torch.Tensor(4):fill(3)
> x:cmul(y)
> = x
 6 6
 6 6
[torch.DoubleTensor of size 2x2]

z = torch.cmul(x, y) returns a new Tensor.
torch.cmul(z, x, y) puts the result in z.
y:cmul(x) multiplies all elements of y with corresponding elements of x.

z:cmul(x, y) puts the result in z.
+++
WHAT IS `torch`?

- Little language overhead compared to Python / Matlab
- JIT compilation via LuaJIT
- Fearlessly write for-loops

 Code snippet from a core package

```lua
function NarrowTable:updateOutput(input)
    for k,v in ipairs(self.output) do self.output[k] = nil end
    for i=1,self.length do
        self.output[i] = input[self.offset+i-1]
    end
    return self.output
end
```

- Plain Lua is ~10kLOC of C, small language
LUA IS DESIGNED TO INTEROPERATE WITH C

FFI allows easy integration with C

- The "FFI" allows easy integration with C code
- Been copied by many languages (e.g. cffi in Python)
- No Cython/SWIG required to integrate C code
- Lua originally designed to be embedded!
 - World of Warcraft
 - Adobe Lightroom
 - Redis
 - nginx
- Lua originally chosen for *embedded* machine learning
WHAT IS **torch**?

- Easy integration into and from C
- Example: using CuDNN functions

```python
for g = 0, self.groups - 1 do
    errcheck('cudnnConvolutionForward', cudnn.getHandle(),
    one: data(),
    self.iDesc[0], input: data() + g*self.input_offset,
    self.weightDesc[0], self.weight: data() + g*self.weight_offset,
    self.convDesc[0], self.fwdAlgType[0],
    self.extraBuffer: data(), self.extraBufferSizeInBytes,
    zero: data(),
    self.oDesc[0], self.output: data() + g*self.output_offset);
end
```
WHAT IS \texttt{torch} ?

- Strong GPU support

\textbf{CUDA Tensors}

Tensors can be moved onto GPU using the \texttt{:cuda} function

\begin{verbatim}
In []:

\texttt{require 'cutorch';}
\texttt{a = a:cuda();}
\texttt{b = b:cuda();}
\texttt{c = c:cuda();}
\texttt{c:mm(a,b) -- done on GPU}
\end{verbatim}
Code for cutting edge models shows up for Torch very quickly

Load Caffe networks in Torch7

NeuralTalk2

Recurrent Neural Network captions your images. Now much faster and better than the original NeuralTalk. Compared to the original NeuralTalk this implementation is batched, uses Torch, runs on a GPU, and supports CNN finetuning. All of these together result in quite a large increase in training speed for the Language Model (~100x), but overall not as much because we also have to forward a VGGNet. However, overall very good models can be trained in 2-3 days, and they show a much better performance.

This is an early code release that works great but is slightly hastily released and probably requires some code reading of inline comments (which I tried to be quite good with in general). I will be improving it over time but wanted to push the code out there because I promised it to too many people.

This current code (and the pretrained model) gets ~0.9 CIDEr, which would place it around spot #6 on the codabab leaderboard. I will submit the actual result soon.

You can find a few more example results on the demo page. These results will improve a bit more once the last few bells and whistles are in place (e.g. beam search, ensembling, reranking).

There’s also a fun video by @crisco, where he runs a neuraltalk2 pretrained model in real time on his laptop during a walk in Amsterdam.
Torch implementation of neural style algorithm

neural-style

This is a torch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

The paper presents an algorithm for combining the content of one image with the style of another image using convolutional neural networks. Here's an example that maps the artistic style of The Starry Night onto a night-time photograph of the Stanford campus.
Neural Conversational Model in Torch

This is an attempt at implementing Sequence to Sequence Learning with Neural Networks (seq2seq) and reproducing the results in A Neural Conversational Model (aka the Google chatbot).

The Google chatbot paper became famous after cleverly answering a few philosophical questions, such as:

Human: What is the purpose of living?
Machine: To live forever.

How it works

The model is based on two LSTM layers. One for encoding the input sentence into a "thought vector", and another for decoding that vector into a response. This model is called Sequence-to-sequence or seq2seq.

Source: http://googleresearch.blogspot.ca/2015/11/computer-respond-to-this-email.html
TORCH - WHERE DOES IT FIT?

How big is its ecosystem?

Smaller than Python for general data science
Strong for deep learning
Switching from Python to Lua can be smooth
TORCH - WHERE DOES IT FIT?

Is it for research or production? It can be for both
But mostly used for research.

There is no silver bullet

- **Industry:**
 - Stability
 - Scale & speed
 - Data Integration
 - Relatively Fixed

- **Research:**
 - Flexible
 - Fast Iteration
 - Debuggable
 - Relatively bare bone
CORE PHILOSOPHY

• Interactive computing
 • No compilation time
• Imperative programming
 • Write code like you always did, not computation graphs in a "mini-language" or DSL
• Minimal abstraction
 • Thinking linearly
• Maximal Flexibility
 • No constraints on interfaces or classes
TENSORS AND STORAGES

• Tensor = n-dimensional array
• Row-major in memory
TENSORS AND STOREAGES

- Tensor = n-dimensional array
- Row-major in memory

<table>
<thead>
<tr>
<th>Tensor</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>size: 4 x 6</td>
<td>stride: 6 x 1</td>
</tr>
</tbody>
</table>
TENSORS AND STORAGES

- Tensor = n-dimensional array
- 1-indexed
TENSORS AND STORAGES

- Tensor = n-dimensional array
- Tensor: size, stride, storage, storageOffset

Size: 6
Stride: 1
Offset: 13
TENSORS AND STORAGES

• Tensor = n-dimensional array
• Tensor: size, stride, storage, storageOffset

Size: 4
Stride: 6
Offset: 3
TENSORS AND STORAGES

In [1]: require 'torch';

In [2]: a = torch.DoubleTensor(4, 6) -- DoubleTensor, uninitialized memory
 a:uniform() -- fills a with uniform noise with mean = 0, stdv = 1

In [3]: print(a)

Out[3]:
0.4332 0.5716 0.5750 0.8167 0.1997 0.6187
0.7775 0.3575 0.0749 0.4028 0.0532 0.4481
0.5088 0.1795 0.6948 0.5700 0.7679 0.6176
0.9225 0.7270 0.2223 0.1087 0.2717 0.8853

[torch.DoubleTensor of size 4x6]
TENSORS AND STORAGES

In [1]: `require 'torch';`

In [2]: `a = torch.DoubleTensor(4, 6) -- DoubleTensor, uninitialized memory
 a:uniform() -- fills a with uniform noise with mean = 0, stdev = 1`

In [3]: `print(a)`

Out[3]:
0.4332 0.5716 0.5750 0.8167 0.1997 0.6187
0.7775 0.3575 0.0749 0.4028 0.0532 0.4481
0.5088 0.1795 0.6948 0.5700 0.7679 0.6176
0.9225 0.7270 0.2223 0.1087 0.2717 0.8853
[torch.DoubleTensor of size 4x6]

In [4]: `b = a:select(1, 3)`

In [5]: `print(b)`

Out[5]:
0.5088
0.1795
0.6948
0.5700
0.7679
0.6176
[torch.DoubleTensor of size 6]
TENSORS AND STORAGES

Underlying storage is shared

In [6]: `b.fill(3);`

In [7]: `print(b)`

Out[7]:
```
3
3
3
3
3
3
[torch.DoubleTensor of size 6]
```

In [8]: `print(a)`

Out[8]:
```
0.4332  0.5716  0.5750  0.8167  0.1997  0.6187
0.7775  0.3575  0.0749  0.4028  0.0532  0.4481
3.0000  3.0000  3.0000  3.0000  3.0000  3.0000
0.9225  0.7270  0.2223  0.1087  0.2717  0.8853
[torch.DoubleTensor of size 4x6]
```
TENSORS AND STORAGES

• GPU support for all operations:
 • require ‘cutorch’
 • torch.CudaTensor = torch.FloatTensor on GPU
• Fully multi-GPU compatible

```
In [ ]: require 'cutorch'
    a = torch.CudaTensor(4, 6):uniform()
    b = a:select(1, 3)
    b:fill(3)
```
TRAINING CYCLE

Moving parts

- HDD
- SSD
- NFS

- Data Loader
- Queue
- Trainer
- Neural Network
- Cost function
- Optimizer
THE NN PACKAGE

HDD
SSD
NFS

Data Loader

Neural Network

Cost function

Optimizer

Trainer

Queue

Data Thread

Shared

threads

nn

nn

optim

CIFAR SUMMER SCHOOL 2016
THE nn PACKAGE

- nn: neural networks made easy
- building blocks of differentiable modules

```python
model = nn.Sequential()
model.add(nn.SpatialConvolution(3,16,5,5))
model.add(nn.Tanh())
model.add(nn.SpatialMaxPooling(2,2,2))
model.add(nn.SpatialContrastiveNormalization(16, image.gaussian(3)))
model.add(nn.SpatialConvolution(16,64,5,5))
model.add(nn.Tanh())
model.add(nn.SpatialMaxPooling(2,2,2))
model.add(nn.SpatialContrastiveNormalization(64, image.gaussian(3)))
model.add(nn.SpatialConvolution(64,256,5,5))
model.add(nn.Tanh())
model.add(nn.Reshape(256))
model.add(nn.Linear(256,10))
model.add(nn.LogSoftMax())
```
THE **NN** PACKAGE

Compose networks like Lego blocks
THE \texttt{nn} PACKAGE

- When training neural nets, autoencoders, linear regression, convolutional networks, and any of these models, we're interested in gradients, and loss functions

- The \texttt{nn} package provides a large set of transfer functions, which all come with three methods:
 - upgradeOutput() -- compute the output given the input
 - upgradeGradInput() -- compute the derivative of the loss wrt input
 - accGradParameters() -- compute the derivative of the loss wrt weights

- The \texttt{nn} package provides a set of common loss functions, which all come with two methods:
 - upgradeOutput() -- compute the output given the input
 - upgradeGradInput() -- compute the derivative of the loss wrt input
THE **NN** PACKAGE

CUDA Backend via the cunn package

```python
-- define model
model = nn.Sequential()
model.add( nn.Linear(100,1000) )
model.add( nn.Tanh() )
model.add( nn.Linear(1000,10) )
model.add( nn.LogSoftMax() )

-- re-cast model as a CUDA model
model:cuda()

-- define input as a CUDA Tensor
input = torch.CudaTensor(100)

-- compute model's output (is a CudaTensor as well)
output = model:forward(input)

-- alternative: convert an existing DoubleTensor to a CudaTensor:
input = torch.randn(100):cuda()
output = model:forward(input)
```
Graph composition using chaining

```python
In [ ]:

-- it is common style to mark inputs with identity nodes for clarity.
input = nn.Identity()

-- each hidden layer is achieved by connecting the previous one
-- here we define a single hidden layer network
h1 = nn.Tanh()(nn.Linear(20, 10)(input))
output = nn.Linear(10, 1)(h1)
mlp = nn.gModule({input}, {output})

x = torch.rand(20)
dx = torch.rand(1)
mlp: updateOutput(x)
mlp: updateGradInput(x, dx)
mlp: accGradParameters(x, dx)

-- draw graph (the forward graph, '.fg')
-- this will produce an SVG in the runtime directory
graph.dot(mlp.fg, 'MLP', 'MLP')
itorch.image('MLP.svg')
```
ADVANCED NEURAL NETWORKS

• nngraph
 • easy construction of complicated neural networks
TORCH-AUTOGRAD BY

- Write imperative programs
- Backprop defined for every operation in the language

```
neuralNet = function(params, x, y)
  local h1 = t.tanh(x * params.W[1] + params.b[1])
  local h2 = t.tanh(h1 * params.W[2] + params.b[2])
  local yHat = h2 - t.log(t.sum(t.exp(h2)))
  local loss = - t.sum(t.cmul(yHat, y))
  return loss
end

-- gradients:
dneuralNet = grad(neuralNet)

-- some data:
x = t.randn(1,100)
y = t.Tensor(1,10):zero() y[1][3] = 1

-- compute loss and gradients wrt all parameters in params:
dparams, loss = dneuralNet(params, x, y)
```
THE OPTIM PACKAGE

- HDD
- SSD
- NFS

- Data Loader

- Neural Network

- Cost function

- Optimizer

- Trainer

- Queue

- Data Thread

- Shared

- threads

nn

nn

optim
THE OPTIM PACKAGE

- Stochastic Gradient Descent
- Averaged Stochastic Gradient Descent
- L-BFGS
- Conjugate Gradients
- AdaDelta
- AdaGrad
- Adam
- AdaMax
- FISTA with backtracking line search
- Nesterov's Accelerated Gradient method
- RMSprop
- Rprop
- CMAES
THE OPTIM PACKAGE

A purely functional view of the world

```lua
config = {
  learningRate = 1e-3,
  momentum = 0.5
}

for i, sample in ipairs(training_samples) do
  local func = function(x)
    -- define eval function
    return f, df_dx
  end
  optim.sgd(func, x, config)
end
```
THE OPTIM PACKAGE

Collecting the parameters of your neural net

- Substitute each module weights and biases by one large tensor, making weights and biases point to parts of this tensor.
TORCH AUTOGRAD

Industrial-strength, extremely flexible implementation of automatic differentiation, for all your crazy ideas.
TORCH AUTOGRAD

Industrial-strength, extremely flexible implementation of automatic differentiation, for all your crazy ideas

Inspired by the original Python autograd from Ryan Adams’ HIPS group: github.com/hips/autograd

Props to:
— Dougal Maclaurin
— David Duvenaud
— Matt Johnson
WE WORK ON TOP OF STABLE ABSTRACTIONS

We should take these for granted, to stay sane!

Arrays: Est: 1957

Linear Algebra: Est: 1979
(now on GitHub!)

Common Subroutines: Est: 1984
All gradient-based optimization (that includes neural nets) relies on **Automatic Differentiation (AD)**

"Mechanically calculates derivatives as functions expressed as computer programs, at machine precision, and with complexity guarantees.” (Barak Pearlmutter).

Not finite differences — generally bad numeric stability. We still use it as "gradcheck" though.

Not symbolic differentiation — no complexity guarantee. Symbolic derivatives of heavily nested functions (e.g. all neural nets) can quickly blow up in expression size.
AUTOMATIC DIFFERENTIATION IS THE ABSTRACTION FOR GRADIENT-BASED ML

All gradient-based optimization (that includes neural nets) relies on **Automatic Differentiation** (AD)

- Rediscovered several times (Widrow and Lehr, 1990)
- Described and implemented for FORTRAN by Speelpenning in 1980 (although forward-mode variant that is less useful for ML described in 1964 by Wengert).
- Popularized in connectionist ML as "backpropagation" (Rumelhart et al, 1986)
- In use in nuclear science, computational fluid dynamics and atmospheric sciences (in fact, their AD tools are more sophisticated than ours!)
AUTOMATIC DIFFERENTIATION IS THE ABSTRACTION FOR GRADIENT-BASED ML

All gradient-based optimization (that includes neural nets) relies on **Reverse-Mode Automatic Differentiation (AD)**

- Rediscovered several times (Widrow and Lehr, 1990)
- Described and implemented for FORTRAN by Speelpenning in 1980 (although forward-mode variant that is less useful for ML described in 1964 by Wengert).
- Popularized in connectionist ML as "backpropagation" (Rumelhart et al, 1986)
- In use in nuclear science, computational fluid dynamics and atmospheric sciences (in fact, their AD tools are more sophisticated than ours!)
Two main modes:
- Forward mode
- Reverse mode (backprop)

Different applications of the chain rule
FORWARD MODE (SYMBOLIC VIEW)

\[
\frac{\partial}{\partial \theta} \mathcal{L}(h(g(f_\theta(x)))) = \left[\frac{df}{d\theta} \right] \left[\frac{dg}{df} \right] \left[\frac{dh}{dg} \right] \left[\frac{d\mathcal{L}}{dh} \right]
\]

\[
\frac{\partial}{\partial \theta} \mathcal{L}(h(g(f_\theta(x)))) = \begin{bmatrix} d\theta \end{bmatrix} \times \begin{bmatrix} J \end{bmatrix} \times \begin{bmatrix} K \end{bmatrix} \times \begin{bmatrix} M \end{bmatrix} \times \begin{bmatrix} 1 \end{bmatrix}
\]
FORWARD MODE (SYMBOLIC VIEW)

\[
\frac{\partial}{\partial \theta} \mathcal{L}(h(g(f_\theta(x)))) = \begin{bmatrix} \frac{df}{d\theta} & \frac{dg}{df} & \frac{dh}{dh} \end{bmatrix} [d\mathcal{L}]
\]

\[
\begin{bmatrix} \theta \times J \\ J \times K \\ K \times M \end{bmatrix} = \begin{bmatrix} \frac{df}{d\theta} \\ \frac{dg}{df} \\ \frac{dh}{dh} \end{bmatrix} [d\mathcal{L}]
\]
FORWARD MODE (SYMBOLIC VIEW)

\[
\frac{\partial}{\partial \theta} \mathcal{L}(h(g(f_\theta(x)))) = \left[\frac{df}{d\theta} \right] \left[\frac{dg}{df} \right] \left[\frac{dh}{dg} \right] \left[\frac{d\mathcal{L}}{dh} \right]
\]

\[
\frac{\partial}{\partial \theta} \mathcal{L}(h(g(f_\theta(x)))) = \left[\frac{df}{d\theta} \right] \times \left[\frac{dg}{df} \right] \times \left[\frac{dh}{dg} \right] \times \left[\frac{d\mathcal{L}}{dh} \right]
\]
FORWARD MODE (SYMBOLIC VIEW)

\[f_\theta : \mathbb{R}^D \rightarrow \mathbb{R}^J \]
\[g : \mathbb{R}^J \rightarrow \mathbb{R}^K \]
\[h : \mathbb{R}^K \rightarrow \mathbb{R}^M \]
\[\mathcal{L} : \mathbb{R}^M \rightarrow \mathbb{R} \]

\[
\frac{\partial}{\partial \theta} \mathcal{L}(h(g(f_\theta(x)))) = \begin{bmatrix}
\frac{df}{d\theta} & \frac{dg}{df} & \frac{dh}{dg} & \frac{d\mathcal{L}}{dh}
\end{bmatrix}
\]

\[
\frac{\partial}{\partial \theta} \mathcal{L}(h(g(f_\theta(x)))) = \begin{bmatrix}
\frac{df}{d\theta}
\end{bmatrix} \begin{bmatrix}
\frac{df}{d\theta}
\frac{dg}{df}
\frac{dh}{dg}
\frac{d\mathcal{L}}{dh}
\end{bmatrix}
\]

\[
\begin{align*}
|\theta| \times J & \quad \times \quad J \times K & \quad \times \quad K \times M & \quad \times \quad M \times 1 \\
\begin{bmatrix}
\frac{df}{d\theta}
\end{bmatrix} & \quad \begin{bmatrix}
\frac{df}{d\theta}
\frac{dg}{df}
\frac{dh}{dg}
\frac{d\mathcal{L}}{dh}
\end{bmatrix}
\end{align*}
\]
FORWARD MODE (SYMBOLIC VIEW)

\[f_\theta : \mathbb{R}^D \rightarrow \mathbb{R}^J \quad g : \mathbb{R}^J \rightarrow \mathbb{R}^K \quad h : \mathbb{R}^K \rightarrow \mathbb{R}^M \quad \mathcal{L} : \mathbb{R}^M \rightarrow \mathbb{R} \]

Left to right:

\[O(|\theta| JK + |\theta| KM + |\theta| M) \]

\[\frac{\partial}{\partial \theta} \mathcal{L}(h(g(f_\theta(x)))) = \begin{bmatrix} \frac{df}{d\theta} \\ \frac{dg}{df} \\ \frac{dh}{dg} \end{bmatrix} \times \begin{bmatrix} |\theta| \times J \\ J \times K \\ K \times M \end{bmatrix} \times \begin{bmatrix} M \times 1 \end{bmatrix} \]
FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```python
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
```

2.727892280477

From Baydin 2016
FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
```

```
a = 3
2.727892280477
```
FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```python
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
```

2.727892280477

From Baydin 2016
FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list".

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
```

a = 3
b = 2

2.727892280477
FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```plaintext
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
```

2.727892280477

a = 3
b = 2

From Baydin 2016
FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

function f(a,b,c)
 if b > c then
 return a * math.sin(b)
 else
 return a + b * c
 end
end
print(f(3,2,1))

a = 3
b = 2
c = 1

2.727892280477

From Baydin 2016
FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```plaintext
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
```

```
a = 3
b = 2
c = 1
```

2.727892280477
FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a “trace”, or a "Wengert list"

```plaintext
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
```

\[a = 3 \]

\[b = 2 \]

\[c = 1 \]

\[d = a \times \text{math.sin}(b) = 2.728 \]
FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```plaintext
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end

print(f(3,2,1))
```

```
a = 3
b = 2
c = 1

d = a * math.sin(b) = 2.728
```

From Baydin 2016
FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
function f(a,b,c)
  if b > c then
    return a * math.sin(b)
  else
    return a + b * c
end
print(f(3,2,1))
```

\[
a = 3 \\
b = 2 \\
c = 1 \\
d = a * \text{math.sin}(b) = 2.728
\]

return 2.728

From Baydin 2016
FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```plaintext
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
```

```
a = 3
b = 2
c = 1
d = a * math.sin(b) = 2.728
```

```
return 2.728
```
FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
function f(a,b,c)
  if b > c then
    return a * math.sin(b)
  else
    return a + b * c
  end
end
print(f(3,2,1))
```

```
a = 3
b = 2
c = 1
d = a * math.sin(b) = 2.728
```

return 2.728
FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list".

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
```

```
a = 3
b = 2
c = 1
d = a * math.sin(b) = 2.728
```

return 2.728
FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list".

```python
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
```

a = 3
b = 2
c = 1
d = a * math.sin(b) = 2.728
return 2.728

da = 3
dada = 1
b = 2
dbda = 0
FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```plaintext
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
```

```
a = 3  a = 3
b = 2  dada = 1
b = 2  dbda = 0
c = 1  c = 1
d = a * math.sin(b) = 2.728
```

return 2.728
FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
end
print(f(3,2,1))
```

```
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2.728</td>
</tr>
</tbody>
</table>
```

From Baydin 2016
FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
end
print(f(3,2,1))
```

```
a = 3
b = 2
c = 1
d = a * math.sin(b) = 2.728
return 2.728
```
FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
```

```
a = 3
b = 2
c = 1
da = a * math.sin(b) = 2.728
d = a * math.sin(b) = 2.728
dda = math.sin(b) = 0.909
return 2.728

a = 3
dada = 1
b = 2
dbda = 0
c = 1
dcda = 0
d = a * math.sin(b) = 2.728
ddda = math.sin(b) = 0.909
```
FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
end
print(f(3,2,1))
```

```
2.727892280477
```

```
a = 3
b = 2
c = 1
d = a * math.sin(b) = 2.728
return 2.728
```

```
a = 3
dada = 1
b = 2
dbda = 0
c = 1
dcda = 0
d = a * math.sin(b) = 2.728
ddda = math.sin(b) = 0.909
return 0.909
```
REVERSE MODE (SYMBOLIC VIEW)

\[
\frac{\partial}{\partial \theta} \mathcal{L}(h(g(f_\theta(x)))) = \left[\frac{df}{d\theta} \right] \left[\frac{dg}{df} \right] \left[\frac{dh}{dg} \right] \left[\frac{d\mathcal{L}}{dh} \right]
\]

\[
|\theta| \times J \times J \times K \times M \times 1
\]
REVERSE MODE (SYMBOLIC VIEW)

\[
\frac{\partial}{\partial \theta} \mathcal{L}(h(g(f_\theta(x)))) = \left[\frac{df}{d\theta} \right] \left[\frac{dg}{df} \right] \left[\frac{dh}{dg} \right] \left[\frac{d\mathcal{L}}{dh} \right]
\]

\[
\frac{\partial}{\partial \theta} \mathcal{L}(h(g(f_\theta(x)))) = \left[\frac{df}{d\theta} \right] \times \left[\frac{dg}{df} \right] \times \left[\frac{dh}{dg} \right] \times \left[\frac{d\mathcal{L}}{dh} \right]
\]
REVERSE MODE (SYMBOLIC VIEW)

\[\frac{\partial}{\partial \theta} \mathcal{L}(h(g(f_\theta(x)))) = \begin{bmatrix} \frac{df}{d\theta} \end{bmatrix} \begin{bmatrix} \frac{dg}{df} \end{bmatrix} \begin{bmatrix} \frac{dh}{dg} \end{bmatrix} \begin{bmatrix} \frac{d\mathcal{L}}{dh} \end{bmatrix} \]

\[\begin{bmatrix} \frac{df}{d\theta} \end{bmatrix} \begin{bmatrix} d\theta \end{bmatrix} = \begin{bmatrix} \frac{df}{d\theta} \end{bmatrix} \begin{bmatrix} \frac{df}{d\theta} \end{bmatrix} \begin{bmatrix} \frac{df}{d\theta} \end{bmatrix} \begin{bmatrix} \frac{df}{d\theta} \end{bmatrix} \]

\[\frac{\partial}{\partial \theta} \mathcal{L}(h(g(f_\theta(x)))) = \begin{bmatrix} \frac{df}{d\theta} \end{bmatrix} \begin{bmatrix} d\theta \end{bmatrix} \begin{bmatrix} \frac{df}{d\theta} \end{bmatrix} \begin{bmatrix} \frac{df}{d\theta} \end{bmatrix} \begin{bmatrix} \frac{df}{d\theta} \end{bmatrix} \]
REVERSE MODE (SYMBOLIC VIEW)

\[
\frac{\partial}{\partial \theta} \mathcal{L}(h(g(f_\theta(x)))) = \left[\frac{df}{d\theta} \right] \left[\frac{dg}{df} \right] \left[\frac{dh}{dg} \right] \left[\frac{d\mathcal{L}}{dh} \right]
\]

\[
\begin{align*}
|\theta| \times J & \quad \times \quad J \times K & \quad \times \quad K \times M & \quad \times \quad M \times 1 \\
\frac{df}{d\theta} & & \frac{dg}{df} & & \frac{dh}{dg} & & \frac{d\mathcal{L}}{dh}
\end{align*}
\]
Reverse Mode (Symbolic View)

Right to left:

\[O(KM + JK + \theta J) \]

\[
\frac{\partial}{\partial \theta} \mathcal{L}(h(g(f_\theta(x)))) = \theta \times J \times J \times K \times K \times M \times 1
\]
REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```python
function f(a, b, c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3, 2, 1))
```

2.727892280477
REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

function f(a, b, c)
 if b > c then
 return a * math.sin(b)
 else
 return a + b * c
 end
end
print(f(3, 2, 1))

2.727892280477

a = 3

From Baydin 2016
REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```python
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
```

2.727892280477

a = 3
b = 2

From Baydin 2016
REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```python
function f(a, b, c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3, 2, 1))
```

```
a = 3
b = 2
c = 1
```

2.727892280477

From Baydin 2016
REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

function f(a,b,c)
 if b > c then
 return a * math.sin(b)
 else
 return a + b * c
end
print(f(3,2,1))

a = 3
b = 2
c = 1
d = a * math.sin(b) = 2.728

From Baydin 2016
REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```python
function f(a, b, c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
end
print(f(3, 2, 1))
```

```
a = 3
b = 2
c = 1
d = a * math.sin(b) = 2.728
return 2.728
```
REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
end
print(f(3,2,1))
```

a = 3
b = 2
c = 1
d = a * math.sin(b) = 2.728
return 2.728
REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
```

a = 3
b = 2
c = 1
d = a * math.sin(b) = 2.728
return 2.728

2.727892280477

From Baydin 2016
REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```python
function f(a, b, c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
end
print(f(3, 2, 1))
```

```
a = 3
b = 2
c = 1
d = a * math.sin(b) = 2.728
return 2.728
```

From Baydin 2016
REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```python
function f(a, b, c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
end
print(f(3, 2, 1))
```

\[
a = 3 \quad \quad \quad a = 3
\]
\[
b = 2 \quad \quad \quad b = 2
\]
\[
c = 1
\]
\[
d = a \times \text{math.sin(b)} = 2.728
\]
\[
\text{return 2.728}
\]
REVERSE MODE (PROGRAM VIEW)

Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```python
function f(a, b, c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3, 2, 1))
```

```plaintext
a = 3
b = 2
c = 1
d = a * math.sin(b) = 2.728
return 2.728
```

From Baydin 2016
REVERSE MODE (PROGRAM VIEW)

Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```python
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
end
print(f(3,2,1))
```

a = 3
b = 2
c = 1
d = a * math.sin(b) = 2.728
return 2.728

From Baydin 2016
REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```python
function f(a, b, c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
end
print(f(3, 2, 1))
```

a = 3
b = 2
c = 1
d = a * math.sin(b) = 2.728
return 2.728

From Baydin 2016
REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```python
function f(a, b, c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3, 2, 1))
```

```plaintext
a = 3
b = 2
c = 1
d = a * math.sin(b) = 2.728
return 2.728
ddddd = 1
ddda = dd * math.sin(b) = 0.909
```

From Baydin 2016
REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```python
function f(a, b, c):
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
end

print(f(3, 2, 1))
```

a = 3
b = 2
c = 1
d = a * math.sin(b) = 2.728
return 2.728

From Baydin 2016
A trainable neural network in torch-autograd

Any numeric function can go here

These two fn’s are split only for clarity

This is the API ->

This is a how the parameters are updated

torch = require 'torch'
params = {
 W = {torch.randn(64*64,50),torch.randn(50,4)},
 b = {torch.randn(64*64), torch.randn(4)}
}

function neuralNetwork(params, image)
 local h1 = torch.tanh(image*params.W[1] + params.b[1])
 local h2 = torch.tanh(h1*params.W[2] + params.b[2])
 return torch.log(torch.sum(torch.exp(h2)))
end

function loss(params, image, trueLabel)
 local prediction = neuralNetwork(params, image)
 return torch.sum(torch.pow(prediction-trueLabel,2))
end

grad = require 'autograd'
dloss = grad(loss)

for _,datapoint in dataset() do
 -- Calculate our gradients
 local gradients = dloss(params, datapoint.image, datapoint.label)
 -- Update parameters
 for i=1,#params.W do
 params.W[i] = params.W[i] - 0.01*gradients.W[i]
 params.b[i] = params.b[i] - 0.01*gradients.b[i]
 end
end
A trainable neural network in torch-autograd

Any numeric function can go here

These two fn’s are split only for clarity

This is the API ->

dloss = grad(loss)

This is how the parameters are updated

def neuralNetwork(params, image):
 local h1 = torch.tanh(image * params.W[1] + params.b[1])
 local h2 = torch.tanh(h1 * params.W[2] + params.b[2])
 return torch.log(torch.sum(torch.exp(h2)))

def loss(params, image, trueLabel):
 local prediction = neuralNetwork(params, image)
 return torch.sum(torch.pow(prediction - trueLabel, 2))

for _, datapoint in dataset() do
 local gradients = dloss(params, datapoint.image, datapoint.label)
 for i=1, #params.W do
 params.W[i] = params.W[i] - 0.01*gradients.W[i]
 params.b[i] = params.b[i] - 0.01*gradients.b[i]
 end
end
WHAT'S ACTUALLY HAPPENING?

As torch code is run, we build up a compute graph

```python
1  params = {W=torch.randn(4,4), b=torch.randn(4)}
2  input = torch.randn(4)
3  target = torch.randn(4)
4  function simpleFn(params, input, target)
5       local h1 = params.W*input
6       local h2 = h1 + params.b
7       local h3 = h2 - target
8       local h4 = torch.pow(h3, 2)
9       local h5 = torch.sum(h4)
10  return h5
11 end
```
WHAT'S ACTUALLY HAPPENING?

As torch code is run, we build up a compute graph.

```
1  params = {W=torch.randn(4,4), b=torch.randn(4)}
2  input = torch.randn(4)
3  target = torch.randn(4)
4  function simpleFn(params, input, target)
5     local h1 = params.W*input
6     local h2 = h1 + params.b
7     local h3 = h2 - target
8     local h4 = torch.pow(h3, 2)
9     local h5 = torch.sum(h4)
10    return h5
11 end
```
WHAT’S ACTUALLY HAPPENING?
As torch code is run, we build up a compute graph

```
params = {W=torch.randn(4,4), b=torch.randn(4)}
input = torch.randn(4)
target = torch.randn(4)

function simpleFn(params, input, target)
  local h1 = params.W*input
  local h2 = h1 + params.b
  local h3 = h2 - target
  local h4 = torch.pow(h3, 2)
  local h5 = torch.sum(h4)
  return h5
end
```
WHAT’S ACTUALLY HAPPENING?

As torch code is run, we build up a compute graph

```python
1  params = {W=torch.randn(4,4), b=torch.randn(4)}
2  input = torch.randn(4)
3  target = torch.randn(4)
4  function simpleFn(params, input, target)
5      local h1 = params.W*input
6      local h2 = h1 + params.b
7      local h3 = h2 - target
8      local h4 = torch.pow(h3,2)
9      local h5 = torch.sum(h4)
10     return h5
11  end
```
WHAT'S ACTUALLY HAPPENING?

As torch code is run, we build up a compute graph

```python
params = {W=torch.randn(4,4), b=torch.randn(4)}
input = torch.randn(4)
target = torch.randn(4)

function simpleFn(params, input, target)
    local h1 = params.W*input
    local h2 = h1 + params.b
    local h3 = h2 - target
    local h4 = torch.pow(h3, 2)
    local h5 = torch.sum(h4)
    return h5
end
```
WHAT’S ACTUALLY HAPPENING?
As torch code is run, we build up a compute graph

```python
params = {W=torch.randn(4,4), b=torch.randn(4)}
input = torch.randn(4)
target = torch.randn(4)
def simpleFn(params, input, target):
    local h1 = params.W*input
    local h2 = h1 + params.b
    local h3 = h2 - target
    local h4 = torch.pow(h3, 2)
    local h5 = torch.sum(h4)
    return h5
end
```
WE TRACK COMPUTATION VIA OPERATOR OVERLOADING

Linked list of computation forms a "tape" of computation

```python
local origSum = torch.sum

torch.sum = function(arg)

    -- Check if the argument has been used before in an overloaded function
    if not isNodeType(arg) then
        return origSum(arg)
    else
        -- Run the function
        local outputVal = origSum(unpackNode(arg))

        -- Build a data structure that will track computation via linked list
        local outputNode = {fn=origSum,parent=arg,val=outputVal}
    end

end

-- Now overload all other numeric functions...
-- sin, cos, tan, sinh, cosh, tanh, add, sub, mul, div, pow
-- select, narrow, size, new, zeros, ...
```
CALCULATING THE GRADIENT

When it comes time to evaluate partial derivatives, we just have to look up the partial derivatives from a table in reverse order on the tape.
WHAT'S ACTUALLY HAPPENING?

When it comes time to evaluate partial derivatives, we just have to look up the partial derivatives from a table.

```python
gradients[torch.sqrt] = {
    function(g, ans, x) return torch.cmul(torch.cmul(g, 0.5), torch.pow(x, -0.5)) end
}
gradients[torch.sin] = {
    function(g, ans, x) return torch.cmul(g, torch.cos(x)) end
}
gradients[torch.cos] = {
    function(g, ans, x) return torch.cmul(g, -torch.sin(x)) end
}
gradients[torch.tan] = {
    function(g, ans, x) return torch.cdiv(g, torch.pow(torch.cos(x), 2.0)) end
}
gradients[torch.log] = {
    function(g, ans, x) return torch.cdiv(g, x) end
}
```

We can then calculate the derivative of the loss w.r.t. inputs via the chain rule!
AUTOGRAD EXAMPLES
Autograd gives you derivatives of numeric code, without a special mini-language

```python
-- Arithmetic is no problem
grad = require 'autograd'
function f(a,b,c)
    return a + b * c
end
df = grad(f)
da, val = df(3.5, 2.1, 1.1)
print("Value: ", ..val)
print("Gradient: ", ..da)

Value: 5.81
Gradient: 1
```
AutoGrad Examples

Control flow, like if-statements, are handled seamlessly

```python
-- If statements are no problem
grad = require 'autograd'
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end

g = grad(f)
da, val = g(3.5, 2.1, 1.1)
print('Value: '..val)
print('Gradient: '..da)
```

Value: 3.0212327832711
Gradient: 0.86320936664887
Scalars are good for demonstration, but autograd is most often used with tensor types.

```python
-- Of course, works with tensors
grad = require 'autograd'
function f(a,b,c)
    if torch.sum(b) > torch.sum(c) then
        return torch.sum(torch.cmul(a,torch.sin(b)))
    else
        return torch.sum(a + torch.cmul(b,c))
    end
end
g = grad(f)
a = torch.randn(3,3)
b = torch.eye(3,3)
c = torch.randn(3,3)
da, val = g(a,b,c)
print("Value: ",val)
print("Gradient: ")
print(da)
```

Value: 0.40072414956087
Gradient:
0.8415 0.0000 0.0000
0.0000 0.8415 0.0000
0.0000 0.0000 0.8415
[torch.DoubleTensor of size 3x3]
AUTOGRAD EXAMPLES

Autograd shines if you have dynamic compute graphs

```python
-- Autograd for loop
function f(a,b)
    for i=1,b do
        a = a*a
    end
    return a
end

g = grad(f)
da, val = g(3,2)
print("Value: ",val)
print("Gradient: ",da)
```

Value: 81
Gradient: 108
AUTOGRAD EXAMPLES

Recursion is no problem. Write numeric code as you ordinarily would, autograd handles the gradients

```python
-- Autograd recursive function
function f(a, b)
    if b == 0 then
        return a
    else
        return f(a*a, b-1)
    end
end

g = grad(f)
da, val = g(3, 2)
print("Value: ", val)
print("Gradient: ", da)
```

Value: 81
Gradient: 108
AUTOGRAD EXAMPLES

Need new or tweaked partial derivatives? Not a problem.

```plaintext
-- New ops aren't a problem
function f(a)
    return torch.sum(torch.floor(torch.pow(a, 3)))
end
g = grad(f)
da, val = g(torch.eye(3))
print("Value: ", val)
print("Gradient: ")
print(da)

Value: 3
Gradient:
  0  0  0
  0  0  0
  0  0  0
[torch.DoubleTensor of size 3x3]
```
AUTOGRAD EXAMPLES

Need new or tweaked partial derivatives? Not a problem.

```
-- New ops aren't a problem
grad = require 'autograd'
special = {}
special.floor = function(x) return torch.floor(x) end
-- Overload our new mini-module, called "special"
grad.overload.module("special",special,function(module)
  -- Define a gradient for the member function "floor"
  module.gradient("floor", {
    -- Here's our new partial derivative
    -- (if we had two arguments,
    -- we'd define two functions)
    function(g,ans,x)
      return g
    end
  })
end)
```
AUTOGRAD EXAMPLES
Need new or tweaked partial derivatives? Not a problem.

```
function f(a)
    return torch.sum(special.floor(torch.pow(a,3)))
end

g = grad(f)
da, val = g(torch.eye(3))
print("Value: ",val)
print("Gradient:")
print(da)
```

Value: 3
Gradient:
 3 0 0
 0 3 0
 0 0 3
[torch.DoubleTensor of size 3x3]
SO WHAT DIFFERENTIATES N.NET LIBRARIES?
The granularity at which they implement autodiff ...

Whole-Model

Layer-Based

Full Autodiff

scikit-learn

Torch NN
cuda-convnet
Lasagne

Autograd
Theano
TensorFlow
SO WHAT DIFFERENTIATES N.NET LIBRARIES?

... which is set by the partial derivatives they define

Whole-Model

Layer-Based

Full Autodiff

scikit-learn

Torch NN
cuda-convnet
Lasagne

Autograd
Theano
TensorFlow
We want no limits on the models we can write.

Why can’t we mix these styles?
NEURAL NET THREE WAYS
The most granular — using individual Torch functions

```python
# Define our parameters
local W1 = torch.FloatTensor(784, 50):uniform(-1/math.sqrt(50), 1/math.sqrt(50))
local B1 = torch.FloatTensor(50):fill(0)
local W2 = torch.FloatTensor(50, 50):uniform(-1/math.sqrt(50), 1/math.sqrt(50))
local B2 = torch.FloatTensor(50):fill(0)
local W3 = torch.FloatTensor(50, #classes):uniform(-1/math.sqrt(#classes), 1/math.sqrt(#classes))
local B3 = torch.FloatTensor(#classes):fill(0)
local params = {
    W = {W1, W2, W3},
    B = {B1, B2, B3},
}

# Define our neural net
local function mlp(params, input, target)
    local h1 = torch.tanh(input * params.W[1] + params.B[1])
    local prediction = autograd.util.logSoftMax(h3)
    local loss = autograd.loss.logMultinomialLoss(prediction, target)
    return loss, prediction
end
```
NEURAL NET THREE WAYS
Composing pre-existing NN layers. If we need layers that have been highly optimized, this is good

```plaintext
-- Define our layers and their parameters
local params = {}
local linear1, linear2, linear3, acts1, acts2, lsm, lossf
linear1, params.linear1 = autograd.nn.Linear(784, 50)
acts1 = autograd.nn.Tanh()
linear2, params.linear2 = autograd.nn.Linear(50, 50)
acts2 = autograd.nn.Tanh()
linear3, params.linear3 = autograd.nn.Linear(50, #classes)
lsm = autograd.nn.LogSoftMax()
lossf = autograd.nn.ClassNLLCriterion()

-- Tie it all together
local function mlp(params)
  local h1 = acts1(linear1(params.linear1, params.x))
  local h2 = acts2(linear2(params.linear2, h1))
  local h3 = linear3(params.linear3, h2)
  local prediction = lsm(h3)
  local loss = lossf(prediction, target)
  return loss, prediction
end
```
NEURAL NET THREE WAYS
We can also compose entire networks together (e.g. image captioning, GANs)

```
-- Grab the neural network all at once
local f, params = autograd.model.NeuralNetwork({
    inputFeatures = 784,
    hiddenFeatures = {50, #classes},
    classifier = true,
})
lsm = autograd.nn.LogSoftMax()
lossf = autograd.nn.ClassNLLCriterion()

-- Link the model and the loss
local loss = function(params, input, target)
    local prediction = lsm(f(params, input))
    local loss = lossf(prediction, target)
    return loss, prediction
end
```
IMPACT AT TWITTER
Prototyping without fear

• We try crazier, potentially high-payoff ideas more often, because autograd makes it essentially free to do so (can write "regular" numeric code, and automagically pass gradients through it)

• We use weird losses in production: large classification model uses a loss computed over a tree of class taxonomies

• Models trained with autograd running on large amounts of media at Twitter

• Often "fast enough", no penalty at test time

• "Optimized mode" is nearly a compiler, but still a work in progress
OTHER AUTODIFF IDEAS

Making their way from atmospheric science (and others) to machine learning

• **Checkpointing** — don’t save all of the intermediate values. Recompute them when you need them (memory savings, potentially speedup if compute is faster than load/store, possibly good with pointwise functions like ReLU). MXNet I *think* first to implement this generally for neural nets.

• **Mixing forward and reverse mode** — called "cross-country elimination". No need to evaluate partial derivatives in one direction! For diamond or hour-glass shaped compute graphs, this will be more efficient than one method alone.

• **Stencils** — image processing (convolutions) and element-wise ufuncs can be phrased as stencil operations. More efficient, general-purpose implementations of differentiable stencils needed (computer graphics do this, Guenter 2007, extending with DeVito et al., 2016).

• **Source-to-source** — All neural net autodiff packages use either ahead-of-time compute graph construction, or operator-overloading. The original method for autodiff (in FORTRAN, in the 80s) was source transformation. I believe still gold-standard for performance. Challenge (besides wrestling with host language) is control flow.

• **Higher-order gradients** — hessian = grad(grad(f)). Not many efficient implementations. Fully closed versions in e.g. autograd, DiffSharp, Hype.
YOU SHOULD BE USING IT

It’s easy to try

```bash
# Install anaconda if you don't have it (instructions here for OS X)
wget http://repo.continuum.io/miniconda/Miniconda-latest-MacOSX-x86_64.sh
sh Miniconda-latest-MacOSX-x86_64.sh -b -p $HOME/anaconda

# Add anaconda to your $PATH
export PATH=$HOME/anaconda/bin:$PATH

# Install Lua & Torch
conda install lua=5.2 lua-science -c alexbw

# Available versions of Lua: 2.0, 5.1, 5.2, 5.3
# 2.0 is LuaJIT
```
YOU SHOULD BE USING IT

It’s easy to try

- **Anaconda** is the de-facto distribution for scientific Python.
- **Works with Lua & Luarocks** now.
- https://github.com/alexbw/conda-lua-recipes

```bash
# Install anaconda if you don't have it (instructions here for OS X)
wget http://repo.continuum.io/miniconda/Miniconda-latest-MacOSX-x86_64.sh
sh Miniconda-latest-MacOSX-x86_64.sh -b -p $HOME/anaconda

# Add anaconda to your $PATH
export PATH=$HOME/anaconda/bin:$PATH

# Install Lua & Torch
conda install lua=5.2 lua-science -c alexbw

# Available versions of Lua: 2.0, 5.1, 5.2, 5.3
# 2.0 is LuaJIT
```
YOU SHOULD BE USING IT
It’s easy to try

- **Anaconda** is the de-facto distribution for scientific Python.
- **Works with Lua & Luarocks** now.
- https://github.com/alexbw/conda-lua-recipes

```bash
# Install anaconda if you don't have it (instructions here for OS X)
wget http://repo.continuum.io/miniconda/Miniconda-latest-MacOSX-x86_64.sh
sh Miniconda-latest-MacOSX-x86_64.sh -b -p $HOME/anaconda

# Add anaconda to your $PATH
echo 'export PATH=$HOME/anaconda/bin:$PATH'

# Install Lua & Torch
conda install lua=5.2 lua-science -c alexbw

# Available versions of Lua: 2.0, 5.1, 5.2, 5.3
# 2.0 is LuaJIT
```
PRACTICAL SESSION

We’ll work through (all in an iTorch notebook)
— Torch basics
— Running code on the GPU
— Training a CNN on CIFAR-10
— Using autograd to train neural networks

We have an autograd Slack team: http://autograd.herokuapp.com/
Join #summerschool channel
QUESTIONS?

Happy to help at the practical session
Find me at:

@awiltsch
awiltschko@twitter.com
github.com/alexbw