Minute Madness
Posters
Demos
Challenges
PhD Posters
Lightning Talks
Voting for Posters & Demos

http://2016.eswc-conferences.org/live

or

available in playstore „ESWC2016 Live“

Unique Codes on the flyer!
Search for posters:
Publications -> by Track -> Poster
Search for demos:
Publications -> by Track -> Demo
Voting

With YOUR UNIQUE CODE you can vote for one poster AND one demo.
Updating conference data:
Settings -> Click to Update
KEEP CALM AND LET'S GO
Posters
Ruben Taelman, Ruben Verborgh, Pieter Colpaert, Erik Mannens and Rik Van de Walle.

Moving Real-Time Linked Data Query Evaluation to the Client
Moving **Continuous Querying to the Client**
Valerio Basile, Elena Cabrio and Fabien Gandon.

Building a General Knowledge Base of Physical Objects for Robots
Annie cuts the bread in the kitchen with her knife.
Vassilis Papakonstantinou, Giorgos Flouris, Irini Fundulaki and Andrey Gubichev.

Some Thoughts on OWL-Empowered SPARQL Query Optimization
Some Thoughts on OWL-Empowered SPARQL Query Optimization
V. Papakonstantinou, G. Flouris, I. Fundulaki and A. Gubichev

OWL is in the LOD
Let us be more efficient in querying the LOD!
Let us consider **OWL schemas** when querying the LOD!
Going the database way!

Consider **OWL constructs** when you build your query plans!

Come and join us at the Poster Session #12
Jörn Hees, Rouven Bauer, Joachim Folz, Damian Borth and Andreas Dengel.

Edinburgh Associative Thesaurus as RDF and DBpedia Mapping
Edinburgh Associative Thesaurus as RDF and DBpedia Mapping

EAT

Mapping to DBpedia and Verification

EAT as RDF & Mapping to DBpedia Entities

https://w3id.org/associations
Kasper Apajalahti, Eero Hyvönen, Juha Niiranen and Vilho Räisänen.

StaRe: Statistical Reasoning Tool for 5G Network Management
StaRe: Statistical Reasoning Tool for 5G Network Management

Kasper Apajalahti1, Eero Hyvönen1, Juha Niiranen2, and Vilho Räisänen3

1Aalto University, Semantic Computing Research Group (SeCo), Finland
2Department of Mathematics and Statistics, University of Helsinki, Finland
3Nokia Bell Labs, Finland

5G networks coming in the 2020s

- **Challenges:**
 - Massive increase in data volume and number of terminals
 - Heterogeneity in cell types, devices and applications
 - Ensure adequate service quality
 - Low operational expenses

- **StaRe solution approach:**
 - **Markov Logic Network** for network management under uncertainty
 - **Ontology** as a semantic data storage
 - **Faceted GUI** to monitor and control

<table>
<thead>
<tr>
<th>ID</th>
<th>Rlf</th>
<th>Cqi</th>
<th>Neighbors</th>
<th>Txp-action</th>
<th>Ret-action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>(0.81)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>(0.87)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>(0.50)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td>(0.89)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>(0.51)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>(0.86)</td>
</tr>
</tbody>
</table>
Thanos Stavropoulos, Georgios Meditskos, Thodoris Tsompanidis, Stelios Andreadis and Ioannis Kompatsiaris.

Dem@Home: Ambient Monitoring and Clinical Support for People Living with Dementia
DEM@HOME: AMBIENT MONITORING AND CLINICAL SUPPORT FOR PEOPLE LIVING WITH DEMENTIA

Thanos G. Stavropoulos, Georgios Meditskos, Thodoris Tsonompanidis, Stelios Andreadis and Ioannis Kompatsiaris

OUR GOALS
- Assessment
- Autonomy
- Personalized Care
- Multiple Aspects of Life

OUR APPROACH
- Rich visual, audio, lifestyle sensing and analytics
- Integration and interpretation of heterogeneous sensor observations
- Tailored applications to 3 pilot scenarios @Lab, @NursingHome, @Home

MULTI-MODAL SENSING

SEMANTIC KNOWLEDGE GRAPHS

HIGH-LEVEL FUSION AND INTERPRETATION

HEALTH STATUS ASSESSMENT

PERSONALIZED FEEDBACK

CLINICAL AND PROFILE KNOWLEDGE

PARTICIPANTS

- 290 @Lab
- 10 @Home
- 6 @NursingHome

ACCURACY

- 84%
- 88%
- 84%

PILOT DEPLOYMENT

- Sweden @Lab, @NursingHome
- Ireland @Home
- France @Lab, @NursingHome
- Greece @Lab, @Home

Information Technologies Institute

CERTH – Centre for Research & Technology Hellas

www.demcare.eu
Ouksili Hanane, Zoubida Kedad, Stéphane Lopes and Sylvaine Nugier.

Pattern-Based Keyword Search on RDF Data
Pattern-Based Keyword Search on RDF Data
Hanane Ouksili, Zoubida Kedad, Stéphane Lopes and Sylvaine Nugier

- Using an inverted index for resources, literals and properties
- Integrating patterns to extract relevant fragments
- Building results
- Ranking the results

RDF/OWL dataset

RDF Graph

Pattern Store

Keyword Query

Inverted Index

Keyword	**idDoc**
David | 1
cooperate | 2, 5
...

Query

\[Q = \{\text{Stéphane, cooperateors, university}\}\]

Fragment Extraction

Fragment Aggregation

Result Ranking

<table>
<thead>
<tr>
<th>Result</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>0.78</td>
</tr>
<tr>
<td>G2</td>
<td>0.70</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Fragment

<table>
<thead>
<tr>
<th>id</th>
<th>Element</th>
<th>Type</th>
<th>Content</th>
<th>Fragement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>aifb:DAVID</td>
<td>Resource</td>
<td>david</td>
<td>aifb:DAVID</td>
</tr>
<tr>
<td>2</td>
<td>swrc:cooperateWith</td>
<td>Property</td>
<td>cooperate</td>
<td>aifb:Stéphane,swrc:cooperateWith,aifb:Sylvaine</td>
</tr>
</tbody>
</table>
Nitish Aggarwal, Sumit Bhatia and Vinith Misra.

Connecting the Dots: Explaining Relationships Between Unconnected Entities in a Knowledge Graph
How to find the explanation of relation between “Alan Turing” and “John Von Neumann”?

Can we build a discovery system to find the hidden relationships, e.g. if “Alan Turing” has any hidden connection with “Niels Abel” or “Paul Dirac”?
Ben De Meester, Anastasia Dimou, Ruben Verborgh, Erik Mannens and
Rik Van de Walle.

An Ontology to Semantically Declare and Describe Functions
The Function Ontology
Sumit Bhatia and Anshu Jain.

Context Sensitive Entity Linking of Search Queries For Enterprise Knowledge Graphs
Context Sensitive Entity Linking of Search Queries For Enterprise Knowledge Graphs

How to get to right entities in the Graph?

Which search algorithm did Sergey and Larry invent?

Total 2600+ entities in graph with Sergey in name
Total 11000+ entities with Larry in name

How to do it accurately and do it fast: <100ms
Ademar Crotti Junior, Christophe Debruyne and Declan O'Sullivan.

Incorporating Functions in Mappings to Facilitate the Uplift of CSV Files into RDF
Incorporating Functions in Mappings to Facilitate the Uplift of CSV Files into RDF

CSV Input

<table>
<thead>
<tr>
<th>id, expenditure1, expenditure2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 40.2, 10</td>
</tr>
<tr>
<td>2, 30.6, 39</td>
</tr>
<tr>
<td>3, 29.22</td>
</tr>
</tbody>
</table>

Function Call

```
rr:predicateObjectMap {
  rr:predicate ex:expenditure;
  rr:objectMap {
    rr:termType rr:Literal;
    rr:datatype xsd:float;
    rrf:functionCall {
      rrf:function <#Sum> ;
      rrf:parameterBindings {
        [ rml:reference "expenditure1" ]
        [ rml:reference "expenditure2" ]
      };
    };
  };
}
```

Function Definition

```
<#Sum>
rrf:functionName "sum" ;
rrf:functionBody ""
  function sum(var1, var2) {
    return parseInt(var1 + var2) ;
  }
""" ;.
```

Output

```
```
Lara Haidar-Ahmad, Amal Zouaq and Michel Gagnon.

Automatic Extraction of Axioms from Wikipedia Using SPARQL
Automatic Extraction of Axioms from Wikipedia Using SPARQL

- **Vehicles** are non-living means of transportation
 Vehicles ⊆ NonLivingMeansOfTransportations

- Grammatical patterns:
 - SUBJECT COPULA OBJECT

- **SPARQL**

- A **currency** is a unit of exchange, facilitating the transfer of goods and services.
 Currency ≡ UnitOfExchange ∩ ∃facilitating.TransferOfGoods ∩ ∃facilitating.TransferOfServices
Peter Bourgonje, Julian Moreno Schneider, Jan Nehring, Georg Rehm, Felix Sasaki and Ankit Srivastava.

Towards a Platform for Curation Technologies: Enriching Text Collections with a Semantic-Web Layer
Towards a Platform for Curation Technologies: Enriching Text Collections with a Semantic-Web Layer

Natural Language Processing
- Model Approach
- Dictionary Approach

Machine Translation
- Input Text (Document)
- Temporal Analyzer
- NIF Output

Semantic Layer
- U.S.
- Soviet Union
- Vietnam
- John F. Kennedy
- Hanoi
- June 1959

Semantic Storage
- Document
- Concept
 - mentions
 - isMentioned
 - hasText
 - Literal (Text)
- rdf:type
- http://schema.org/Date
- http://schema.org/Location
- http://schema.org/Person
- http://schema.org/Organization

Model Approach
- Input Text
- Temporal Analyzer
- NIF Output

Dictionary Approach
- Input Text
- Temporal Analyzer
- NIF Output
Ran Yu, Ujwal Gadiraju, Xiaofei Zhu, Besnik Fetahu and Stefan Dietze.

Entity Summarisation on Structured Web Markup
Towards Entity Summarisation on Structured Web Markup
Ran Yu, Ujwal Gadiraju, Xiaofei Zhu, Besnik Fetahu, Stefan Dietze | yu@l3s.de
L3S Research Center

Web markup: Web Data Commons 2014 Dec - 20.48 billion quads, 30% web page containing markup (e.g. schema.org), increasing rapidly. - it’s cool!

I can know entities better!
But… markup is noisy, redundant thus hard to use as knowledge base

How?! to derive correct and diverse entity summaries

Find out! -- poster 42
Mouna Kamel and Cassia Trojahn.

Taking advantage of discursive properties for validating hierarchical semantic relations extracted from parallel enumerative structures
The American College of Endocrinology (ACE) and the American Association of Clinical Endocrinologists (AACE) have developed lifestyle intervention guidelines for preventing the onset of type 2 diabetes:

- Healthy meals (a diet low in saturated fat, sugars, and refined carbohydrates, as well as limited sodium and total calories)
- Physical exercise (45 minutes of exercise per day, five days a week) Reducing weight by as little as 5-10 percent may have a significant impact on overall health

Prediabetes typically has no distinct signs or symptoms. Patients should monitor for signs and symptoms of type 2 diabetes mellitus. These include the following:

- Constant hunger
- Unexplained weight loss
- Weight gain
- Flu-like symptoms, including weakness and fatigue
- Blurred vision
- Slow healing of cuts or bruises
- Tingling or loss of feeling in hands or feet
- Recurring gum or skin infections
- Recurring vaginal or bladder infections
- A high BMI (Body Mass Index) result

The risk factors for which are listed below:

- Family history (parent or sibling)
- Dyslipidemia (triglycerides > 200 or HDL < 35)
- Overweight or obesity (body mass index > 25)
- History of gestational diabetes or infant born with birth weight greater than 9 lb (4 kg)
- High risk ethnic group
- Hypertension (systolic blood pressure >140 mmHg or diastolic blood pressure >90 mmHg)
- Prior fasting blood glucose > 99
- Known vascular disease
- Markers of insulin resistance (PCOS, acanthosis nigricans)

Lost in relation extraction? ... Let's visit our poster on validation!
Sumit Bhatia, Alok Goel, Elizabeth Bowen and Anshu Jain.

Separating Wheat From the Chaff –
A Relationship Ranking Algorithm
Separating Wheat From the Chaff – A Relationship Ranking Algorithm

What are the most important facts for a given entity?

All edges are not equally important!
Andrea Giovanni Nuzzolese, Anna Lisa Gentile, Valentina Presutti and Aldo Gangemi.

Semantic Web Conference Ontology – a Refactoring Solution
Semantic Web Conference Ontology
a Refactoring Solution

What happens to conference metadata?
https://w3id.org/scholarlydata
Femke Ongenae, Pieter Bonte, Jeroen Schaballie, Bert Vankeirsbilck and Filip De Turck.

Semantic context consolidation and rule learning for optimized transport assignments in hospitals
Demos
Jakub Klímek, Petr Škoda and Martin Nečaský.

LinkedPipes ETL: Evolved Linked Data Preparation
LinkedPipes ETL

Lightweight ETL tool for Linked Data

- Web standards
- OpenAPI
- Open source
- Pipeline debugging support

Used and contributed by OpenBudgets.eu
Dumitru Roman, Marin Dimitrov, Nikolay Nikolov, Antoine Putlier, Dina Sukhobok, Brian Elvesæter, Arne.J. Berre, Xianglin Ye, Alex Simov and Yavor Petkov.

DataGraft: Simplifying Open Data Publishing
One-stop-shop for hosted data management

Powerful data transformation and reliable data access capabilities

...for data workers to manage their data in a simple, effective, and efficient way

https://datagraft.net
Ali Masri, Karine Zeitouni and Zoubida Kedad.

Link++: A flexible and customizable tool for connecting RDF data sources
Current Interlinking Tools

- Bike Sharing Station
- Bus Stop

(X1,Y1) ➔ (X2,Y2)

<BikeStation1><owl:sameAs><BusStop1>

Problems
- Limited similarity metrics
- Insufficient information level

Link++

- Configuration Parameters
 - Connection Configuration
 - Functions
 - Properties
 - Connection Pattern
 - Functions Library

Connection Store

Connection Generation
- Rule Configuration
- Rule Execution

Input Data ➔ Connection Store
Jakub Klímek, Jiří Helmich and Martin Nečaský.

LinkedPipes Visualization: Simple Useful Linked Data Visualization Use Cases
LinkedPipes Visualization

Vocabulary-based Automatic Linked Data visualizations

- 1-click visualizations
- extensible framework
- Demonstration of benefits of proper data modelling
Jo Kent.

ADA – Automated Data Architecture: Creating user journeys through content using Linked Data
Pieter Heyvaert, Anastasia Dimou, Ruben Verborgh, Erik Mannens and Rik Van de Walle.

Graph-Based Editing of Linked Data Mappings using the RMLEditor
Finally, the generation of Linked Data made easy

use the RMLEditor

write mapping document

data publishers

Semantic Web experts

data publishers

Semantic Web experts
Carlo Allocca, Alessandro Adamou, Mathieu d'Aquin and Enrico Motta.

SPARQL Query Recommendations by Example
Squire: SPARQL Query Recommendations by Example

How can I access...?

Here, my liege!

Select *
Where {?s ?p ?o}
Hassan Saif, Maxim Bashevoy, Steve Taylor, Miriam Fernandez and Harith Alani.

SentiCircles: A Platform for Contextual and Conceptual Sentiment Analysis
What Does the Public Think?

SentiCircles for Policy Makers

Created Mar 1st 2016, 15:53

Home / Demo project / What people are saying

Core items

<table>
<thead>
<tr>
<th>Name</th>
<th># Tweets</th>
<th>Sentiment</th>
<th># Related terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>electric</td>
<td>963</td>
<td>0.5</td>
<td>1134</td>
</tr>
<tr>
<td>cars</td>
<td>760</td>
<td>-0.3</td>
<td>133</td>
</tr>
<tr>
<td>tesla</td>
<td>57</td>
<td>-0.4</td>
<td>106</td>
</tr>
<tr>
<td>#ev</td>
<td>37</td>
<td>-0.4</td>
<td>106</td>
</tr>
<tr>
<td>...</td>
<td>53</td>
<td>-0.4</td>
<td>105</td>
</tr>
<tr>
<td>ev3</td>
<td>87</td>
<td>-0.5</td>
<td>96</td>
</tr>
<tr>
<td>geneva</td>
<td>48</td>
<td>-0.4</td>
<td>93</td>
</tr>
<tr>
<td>#electric</td>
<td>25</td>
<td>-0.5</td>
<td>89</td>
</tr>
<tr>
<td>#electriccar</td>
<td>22</td>
<td>-0.4</td>
<td>89</td>
</tr>
<tr>
<td>morgan</td>
<td>131</td>
<td>0.6</td>
<td>86</td>
</tr>
</tbody>
</table>

Related items

<table>
<thead>
<tr>
<th>Name</th>
<th>Sentiment</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>ride-sharing</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>in-car</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>bulk</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>monitors</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>negotiation</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>times</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>tough</td>
<td>-0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>legacy</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>entire</td>
<td>0.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Showing 1 to 10 of 1,352 entries 1 row selected

Showing 1 to 10 of 133 entries 1 row selected
Guillermo Vega-Gorgojo, Laura Slaughter, Martin Giese, Simen Heggestøyl, Johan Wilhelm Klüwer and Arild Waaler.

PepeSearch: Easy to use & easy to install semantic data search
PEPESearch
Semantic Search for All the Pepes

Automatic installation

“Want to find drugs for rocky mountain spotted fever”

Easy to use forms

Find the answers

Browse the results

<table>
<thead>
<tr>
<th>Drug</th>
<th>indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>[drugbank_vocabulary:Drug]</td>
<td>[sider_vocabulary: indication]</td>
</tr>
<tr>
<td>Doxycycline [drugbank:DB00254]</td>
<td>rocky mountain spotted fever [umls:C0035793]</td>
</tr>
<tr>
<td>Minocycline [drugbank:DB01017]</td>
<td>rocky mountain spotted fever [umls:C0035793]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug [drugbank_vocabulary:Drug]</th>
</tr>
</thead>
<tbody>
<tr>
<td>label</td>
</tr>
<tr>
<td>Doxycycline [drugbank:DB00254]</td>
</tr>
<tr>
<td>description</td>
</tr>
<tr>
<td>A synthetic tetracycline derivative with similar antimicrobial activity. Animal studies suggest that it may cause less tooth staining than other tetracyclines. It is used in some areas for the treatment of chloroquine-resistant falciparum malaria (malaria, falciparum). [PubChem]</td>
</tr>
<tr>
<td>title</td>
</tr>
<tr>
<td>Doxycycline</td>
</tr>
<tr>
<td>external link</td>
</tr>
<tr>
<td>http://bio2rdf.org/drugbank:DB00254</td>
</tr>
<tr>
<td>anthrax [umls:C0003175]</td>
</tr>
<tr>
<td>infection bacterial [umls:C0004623]</td>
</tr>
</tbody>
</table>
Fabien Chevalier.

AutoRDF - Using OWL as an Object Graph Mapping (OGM) specification language
AutoRDF - Using OWL as an Object Graph Mapping specification language

https://github.com/ariadnext/AutoRDF

- Object layer on top of Redland for easier RDF dataset handling
- Generates C++ proxy classes from RDFS/OWL Ontology
- Read/Write support through Redland library, all popular RDF formats supported
- C++, Open Source, LGPLv3
- Used by AriadNEXT ID document certification software (http://www.idcheck.io)
Martin Ledvinka, Bogdan Kostov and Petr Kremen.

JOPA: Efficient Ontology-based Information System Design
JOPA
Efficient Ontology-based Information System Design

- Formal object-ontological mapping
- Separate storage access
- Explicit inferred knowledge
- JPA features
- Unmapped properties and types
- Contexts

Integrity constraints:

Report ⊑ ∀documents · Event,
Report ⊑ (= 1 documents),
Report ⊑ ∀hasAuthor · Person,
Report ⊑ (= 1 hasAuthor),
Report ⊑ ∃documents · Entity,
Audit ⊑ ∀isDocumentedBy · Report

Martin Ledvinka (martin.ledvinka@fel.cvut.cz)
Czech Technical University in Prague, Faculty of Electrical Engineering
Anna Lisa Gentile, Sabrina Kirstein, Heiko Paulheim and Christian Bizer.

Extending RapidMiner with Data Search and Integration Capabilities
Extending RapidMiner with Data Search and Integration Capabilities
Dmitry Pavlov, Dmitry Mouromtsev, Yury Emelyanov, Daniil Razdyakonov, Alexey Morozov and Olga Parkhimovich.

Workflow supporting toolset for diagram-based collaborative ontology development implemented in open budget domain
Ontodia – dataviz tool for ontology development workflow
Kuldeep Singh, Andreas Both, Dennis Diefenbach, Saedeeh Shekarpour, Didier Cherix and Christoph Lange.

Qanary-the Fast Track to Create a Question Answering System with Linked Data Technology
Qanary - The Fast Track to Creating a Question Answering System with Linked Data Technology

Let's create Question Answering Systems together!

- **Interact now! Join Us on GitHub:** https://github.com/WDAqua/Qanary
- **Catch us on the Project Website:** [WDAqua - A project of Marie Curie ITN](http://wdaqua.informatik.uni-bonn.de/)
- **Or just email:** Kuldeep.singh@iais.fraunhofer.de

Kuldeep Singh, Andreas Both, Dennis Diefenbach, Saeedeh Shekarpour, Christoph Lange, and Didier Cherix
Albert Meroño-Peñuela and Rinke Hoekstra.

The Song Remains The Same: Lossless Conversion and Streaming of MIDI to RDF and Back
BRING YOUR MIDIS TO THE DARK SIDE

Albert Meroño-Peñuela & Rinke Hoekstra

Episode I
Non-interoperable symbolic music representation formats

Episode II
Findability of music limited by its metadata

Episode III
Manual and non-repeatable multi-source music composition
Challenges
Sebastien Ferré

SPARKLIS @ QALD Challenge (Task 3)
SPARKLIS @ QALD-6 Challenge

Come and solve the puzzle!
http://www.irisa.fr/LIS/ferre/sparklis/

SPARQL computations (aggregations, expressions)
Guided Query Builder
Natural Language Interface

- data cubes
- numerical data
- statistical questions
- RDF analytics
- OLAP-like operations

<table>
<thead>
<tr>
<th>system</th>
<th>correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparklis / expert user</td>
<td>94%</td>
</tr>
<tr>
<td>Sparklis / beginner</td>
<td>76%</td>
</tr>
<tr>
<td>QA³</td>
<td>50%</td>
</tr>
<tr>
<td>CubeQA</td>
<td>38%</td>
</tr>
</tbody>
</table>
Laurens De Vocht, Ruben Verborgh, Erik Mannens and Rik Van de Walle

Using Triple Pattern Fragments To Enable Streaming of Top-k Shortest Paths via the Web
Streaming Top-K Shortest Paths via the Web
Sree Harsha Ramesh, Arnab Dhar, Raveena R. Kumar, Anjaly V, Sarath K. S, Jason Pearce and Krishna R. Sundaresan

 Automatically Identify and Label Sections in Scientific Journals using Conditional Random Fields
Automatically Identify and Label Sections in Scientific Journals using Conditional Random Fields

SemPub 2016 Queries
- Author Affiliations
- Affiliation Countries
- Supplementary Materials
- First Level Section Headers
- Table Captions
- Figure Captions
- Funding Agencies
- Funding Projects

Applications of Metadata Extraction
- Journal Management Systems
- Recommendation Systems
- Manuscript Autoconversion
Bahar Sateli and René Witte

An Automatic Workflow for Formalization of Scholarly Articles' Structural and Semantic Elements
Our Goal: Move from this:

Google

semantic representation of scientific articles

Scholar

About 350,000 results (0.09 sec)

To Working with your own Personal Research Agent:

Scientific Literature

Linked Open Data (LOD)

See the demo (and become a beta tester :) at the poster session
PhD Posters
Emir Muñoz.

On Learnability of Constraints from RDF Data
#YourRDFDataIsBecomingAMonster

#GivingShape2RDF

#Constraints4RDF

I just want to SPARQL you!
Benjamin Timmermans.

Exploiting disagreement through open-ended tasks for capturing the interpretation of sound
Exploiting disagreement through open-ended tasks for capturing interpretation spaces

By Benjamin Timmermans / @8w
Amna Basharat.

Semantics Driven Human-Machine Computation Framework for Linked Islamic Knowledge Engineering
Semantics Driven Human-Machine Computation Framework for Linked Islamic Knowledge Engineering

The Linked Data Potential of Islamic Knowledge
Oana Inel.

Machine-Crowd Annotation Workflow for Event Understanding across Collections and Domains
Machine-Crowd Annotation Workflow for Event Understanding across Collections and Domains

Create context by means of events

CrowdTruth approach: disagreement is signal

Collect perspectives from the crowd & reuse existing tools/methods

Teach machines to reason in the disagreement space
Towards scalable federated context-aware stream reasoning
Lightning Talks
LIGHTNING TALK

Tom De Nies & Axel Ngonga

HOBBIT Special Session on Linked Data Benchmarking Requirements (June 1st - 11:00)
Special Session on Linked Data Benchmarking Requirements

Join us tomorrow at 11:00!

Fill in http://goo.gl/iKN50r & win an Amazon Voucher!
Filip Ilievski

How long is the long tail? (a.k.a. Every generation has its own Ronaldo)
How long is the long tail?

a.k.a. Every generation has its own Ronaldo
Paolo Pareti

A Linked Data Web of Know-How
A Linked Data Web of Know-How
Paolo Pareti, University of Edinburgh
LIGHTNING TALK

Mike Lauruhn

Disseminating access to Model Organism Database annotation tools
Disseminating access to Model Organism Database annotation tools

Model organism databases are used to identify organisms and annotate research data and publications.

E. coli | Chlamydomonas | Fission yeast | Maize
Arabidopsis | Zebrafish | Rat

Some common processes for curating publications are inefficient with curators attempting to identify organisms from the text of a published journal article.

Can we get access to the Model Organism Databases integrated into a natural workflow for researchers?
Is this a semantic web solution?

@mikelauruhn / @elsevierlabs
Poster & Demo Session

Thursday, June 2nd, 9:00 - 11:00 a.m.
Rooms Polymnia, Erato, Kalia, Melpo

with complementary breakfast buffet