Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent Speedup

Yufei Ding, Yue Zhao, Xipeng Shen
Madanlal Musuvathi, Todd Mytkowicz

North Carolina State University, USA
Microsoft Research at Redmond, USA
Popular Clustering Algorithm: K-Means

One of the most popular algorithms for clustering.

Decades of usage in various domains since proposed by Lloyd in 1957.
Classic Algorithm [by Lloyd]

Each assignment step calculates N*K distances. cause slow clustering for large problems

- Group N points into K clusters
- Set initial centers
 - Assign points to clusters based on d(p, c) ∀p,c
 - Update centers w/ new centroids
- Convergence
Are all distance calculations necessary?

Each assignment step calculates \(N \times K \) distances.

cause slow clustering for large problems

Group \(N \) points into \(K \) clusters

If \(c \) is not the closest center to \(p \), it’s safe to skip computing \(d(p, c) \).
Prior Work

• K-D Tree [Kanungo et al., 2002]
 • Slowdowns for high dimensions

• Incremental Optimization

Lloyd’s K-Means remains the dominant choice in practice!

• Many times of memory space cost
• Slowdowns in some cases (medium dim, large K & N)

• Approximation [Wang et al., 2012]
 • Different results
 • Unable to inherit the level of trust
Goal of This Work

Develop a drop-in replacement of Lloyd’s K-Means.

- **Speed:** Much faster in all settings (N, K, D)
- **Trust:** Same results as Lloyd’s K-Means produces
- **Simplicity:** Easy to implement and deploy
Overview of Yinyang K-Means

Minimize # of distance calculations:

- Carefully maintain and leverage **lower bounds** & **upper bounds**
- A 3-level filter
- Space-conscious elastic design

On average, **9.36X faster** than classic K-Means.
No slowdown regardless of N, K, dim.
Triangular Inequality

- Fundamental tool for getting bounds

\[
|d(x,c') - d(c',c)| \leq d(x,c) \leq d(x,c') + d(c',c)
\]

lower bound: \(\text{lb}(x, c)\)
upper bound: \(\text{ub}(x, c)\)

- \(x\): data point
- \(C'\): center in iteration \(i\)
- \(C\): center in iteration \(i+1\)
Assignment Step

- Three levels of filters
- Overhead V.S. Benefits
Global Filtering

- One single check to decide whether a point is possible to change its center assignment.

Question: Is c_1 the closest center for x in this iteration?

Prior iter: $G' = \{C'_1, C'_2, \ldots, C'_k\} - C'_1$

This iter: $G = \{C_1, C_2, \ldots, C_k\} - C_1$
Global Filtering

- One single check to decide whether a point is possible to change its center assignment.

Principle 1:
\[\text{if } \text{ub}(x,c_1) \leq \text{lb}(x, G); \text{ then x does not change assignment.} \]

- Compute \(\text{ub}(x,c_1) \) and \(\text{lb}(x, G) \)
 \[\text{ub}(x,c_1) = \text{ub}(x, c') + \Delta c_1 \]
 \[\text{lb}(x, G) = \text{lb}(x,G') - \text{maxdelta} \]

- \(\Delta c_1 = d(c,c') \)
 \[\text{maxdelta} = \text{Max} (\Delta(c)) \quad \forall c \]
Global Filtering

\[
\begin{align*}
\text{ub}(x, c_1) &= \text{ub}(x, c'_1) + \Delta c_1 \\
\text{lb}(x, G) &\leq \text{lb}(x, G') - \text{maxdelta}
\end{align*}
\]

Overhead:
Space Cost: \(O(n) \) to store bounds
Time Cost: \(O(k \cdot d + n) \) to compute center shifts and bounds

Benefits: \(~60\%\) redundant distance computation can be removed
• Limiting factor: \(\text{maxdelta} = \text{Max} (\Delta(c)) \quad \forall c \)
Group Filtering

• Group filtering:

- **Principle I:**

 If \(\text{ub}(x, c_i) \leq \text{lb}(x, G_i) \);

 then no center in \(G_i \) can be closest to \(x \).

- **Rules to compute \(\text{ub}(x, c_i) \) and \(\text{lb}(x, G) \)**

 \[
 \text{ub}(x, c_i) = \text{ub}(x, c'_i) + \Delta c_i
 \]

 \[
 \text{lb}(x, G_i) \leq \text{lb}(x, G'_i) - \maxdelta(G_i)
 \]

- \(\Delta c_i = d(c_i, c'_i) \)

 \[
 \maxdelta(G_i) = \text{Max} (\Delta(c)) \quad \forall c \in G_i
 \]
Group Filtering

• How to do the grouping?

Partial K-Means on initial centers
(one time preprocessing)

Overhead: $O(k \cdot m \cdot d \cdot \text{iter})$
(we set iter to 5)

Choosing m—Elasticity:
• $m = k/10$ if space allows
• max value otherwise
Group Filtering

• Efficiency and overhead

\[
\begin{align*}
ub(x, c_1) &= ub(x, c'_1) + \Delta(c_1) \\
lb(x, G_i) &\leq lb(x, G_i) - \text{maxdelta}(G_i)
\end{align*}
\]

Overhead:
Space Cost: \(O(n \cdot m)\) to maintain bounds across iteration
Time Cost: \(O(k \cdot d + n \cdot m)\) to compute center shifts and bounds

Efficiency:
\~80\% redundant distance computation can be removed
Local Filtering

Check each remaining center, and skip c if
\[\min_2(x) \leq lb(x, Gi) - \Delta c_j \]

\(\min_2(x)\): the so-far 2nd shortest distance from x.

No extra space cost!
Update Step

Set initial centers

Assign points to clusters based on $d(p, c) \forall p, c$

Update centers w/ new centroids

Convergence

See paper.
Evaluation

• Compared to three other methods:
 • Classic (Lloyd’s) K-Means
 • Elkan’s K-Means [2003]
 • Drake’s K-Means [2012]
• Input: real-world data sets (with different N, K, Dim)
 • 4 from UCI machine learning repository [Bache Lichman, 2013]
 • 4 other commonly used image data sets [Wang et al., 2012].
• Implemented in GraphLab (a map-reduce framework)
• Two machines
 • 16GB memory, 8-core i7-3770K processor
 • 4GB memory, 4-core Core2 CPU
Baseline: Classic K-means

(16GB, 8-core Intel Ivy Bridge)
Baseline: Classic K-means
(16GB, 8-core)
Please read our paper for details!
Final Takeaways

• Yinyang K-Means: A Drop-In Replacement
 • Consistently much faster
 • Minimize distance calculations (via a Yinyang harmony)
 • Superior cost-benefit tradeoff
 • Elastic design
 • Inherited trust
 • Same results as classic K-Means gives

Code: http://research.csc.ncsu.edu/nc-caps/yykmeans.tar.bz2