Distributed Estimation of Generalized Matrix Rank: Efficient Algorithms and Lower Bounds

Yuchen Zhang, Martin Wainwright, Michael Jordan

UC Berkeley
Multi-Party Linear Algebra

Given a matrix $A \in \mathbb{R}^{n \times n}$, compute an algebraic function $f(A)$.

Linear algebra problems:

1. $f(A) = I$ (if A is singular).
2. $f(A) = \text{rank of } A$.
3. $f(A) = \text{minimum singular value of } A$.
4. $f(A) = A^{-1}b$ for vector $b \in \mathbb{R}^n$.
5. $f(A) = \arg \min_{x \in \mathbb{R}^n} x^T Ax + b^T x$.

Multi-party Game: how to compute $f(A)$ if A is held by two (or more) parties?

Alice has $A_1 \in \mathbb{R}^{n \times n}$, Bob has $A_2 \in \mathbb{R}^{n \times n}$, $A = A_1 + A_2$.
Multi-Party Linear Algebra

Given a matrix $A \in \mathbb{R}^{n \times n}$, compute an algebraic function $f(A)$.

Linear algebra problems:
- $f(A) = \mathbb{I}(A \text{ in singular})$.
- $f(A) = \text{rank of } A$.
- $f(A) = \text{minimum singular of } A$.
- $f(A) = A^{-1}b$ for vector $b \in \mathbb{R}^n$.
- $f(A) = \arg \min_{x \in \mathbb{R}^n} x^T Ax + b^T x$
Multi-Party Linear Algebra

Given a matrix $A \in \mathbb{R}^{n \times n}$, compute an algebraic function $f(A)$.

Linear algebra problems:

- $f(A) = \mathbb{I} (A \text{ in singular})$.
- $f(A) = \text{rank of } A$.
- $f(A) = \text{minimum singular of } A$.
- $f(A) = A^{-1}b$ for vector $b \in \mathbb{R}^n$.
- $f(A) = \arg \min_{x \in \mathbb{R}^n} x^T Ax + b^T x$

Multi-party Game: how to compute $f(A)$ if A is held by two (or more) parties?

- Alice has $A_1 \in \mathbb{R}^{n \times n}$, Bob has $A_2 \in \mathbb{R}^{n \times n}$, $A = A_1 + A_2$
- Alice has $A_1 \in \mathbb{R}^{n \times n/2}$, Bob has $A_2 \in \mathbb{R}^{n \times n/2}$, $A = [A_1 \ A_2]$.
Singularity Test

\[f(A) = \mathbb{I}(A \text{ in singular}). \]

Question: How many bits should be communicated to compute \(f(A) \)?

Upper bound: \(O(n^2) \) (Bob sends everything to Alice)
Singularity Test

\[f(A) = \mathbb{I}(A \text{ in singular}). \]

Question: How many bits should be communicated to compute \(f(A) \)?

Upper bound: \(O(n^2) \) (Bob sends everything to Alice)

Lower bound:
- \(\Omega(n^2) \) for deterministic algorithm. (Chu and Schnitger, 1991)
Singularity Test

\[f(A) = \mathbb{I}(A \text{ in singular}). \]

Question: How many bits should be communicated to compute \(f(A) \)?

Upper bound: \(O(n^2) \) (Bob sends everything to Alice)

Lower bound:
- \(\Omega(n^2) \) for deterministic algorithm. (Chu and Schnitger, 1991)
- \(\Omega(1) \) for randomized algorithm.
Non-perfect Singularity Test

\[f(A) = \mathbb{I}(A \text{ in singular}). \]

Question: How many bits should be communicated to compute \(f(A) \)?
Non-perfect Singularity Test

\[f(A) = \mathbb{I}(A \text{ in singular}). \]

Question: How many bits should be communicated to compute \(f(A) \)?

Two classes of matrices are extremely difficult to distinguish:

- singular v.s. non-singular with arbitrarily small singular value.
Non-perfect Singularity Test

\[f(A) = \mathbb{I}(A \text{ in singular}). \]

Question: How many bits should be communicated to compute \(f(A) \)?

Two classes of matrices are extremely difficult to distinguish:
- singular v.s. non-singular with arbitrarily small singular value.

In practice, do we really need perfect classification?
Non-perfect algorithm: allow \(f(A) \) making mistakes if the minimum singular value is between \((0, t)\). For example: \(t = n^{-10} \).
Non-perfect Singularity Test

\[f(A) = \mathbb{I}(A \text{ in singular}). \]

Question: How many bits should be communicated to compute \(f(A) \)?

Two classes of matrices are extremely difficult to distinguish:
- singular v.s. non-singular with arbitrarily small singular value.

In practice, do we really need perfect classification?
Non-perfect algorithm: allow \(f(A) \) making mistakes if the minimum singular value is between \((0, t)\). For example: \(t = n^{-10} \).

Non-perfect algorithms:
Upper bound: \(O(n^2) \) (Bob sends everything to Alice)
Non-perfect Singularity Test

\[f(A) = \mathbb{I}(A \text{ in singular}). \]

Question: How many bits should be communicated to compute \(f(A) \)?

Two classes of matrices are extremely difficult to distinguish:
 singular v.s. non-singular with arbitrarily small singular value.

In practice, do we really need perfect classification?
Non-perfect algorithm: allow \(f(A) \) making mistakes if the minimum singular value is between \((0, t)\). For example: \(t = n^{-10} \).

Non-perfect algorithms:
Upper bound: \(O(n^2) \) (Bob sends everything to Alice)
Lower bound: \(O(1) \) (deterministic or randomized).
Communication Complexity of Non-perfect Algorithm

For a broad class of problems:

- \(f(A) = \mathbb{I}(A \text{ in singular}) \).
- \(f(A) = \text{rank of } A \).
- \(f(A) = \text{minimum singular of } A \).
- \(f(A) = A^{-1} b \) for vector \(b \in \mathbb{R}^n \).
- \(f(A) = \arg \min_{x \in \mathbb{R}^n} x^T Ax + b^T x \)

By allowing:

- mistake in ambiguous cases
- approximation errors

We have:

- No communication-efficient algorithm.
- No non-trivial lower bound.
Communication Complexity of Non-perfect Algorithm

For a broad class of problems:

- $f(A) = \mathbb{I}(A \text{ in singular}).$
- $f(A) = \text{rank of } A.$
- $f(A) = \text{minimum singular of } A.$
- $f(A) = A^{-1}b$ for vector $b \in \mathbb{R}^n.$
- $f(A) = \arg \min_{x \in \mathbb{R}^n} x^T Ax + b^T x$

By allowing:

- mistake in ambiguous cases
- approximation errors
Communication Complexity of Non-perfect Algorithm

For a broad class of problems:

- $f(A) = \mathbb{I}(A \text{ in singular})$.
- $f(A) = \text{rank of } A$.
- $f(A) = \text{minimum singular of } A$.
- $f(A) = A^{-1}b$ for vector $b \in \mathbb{R}^n$.
- $f(A) = \arg\min_{x \in \mathbb{R}^n} x^T Ax + b^T x$

By allowing:

- mistake in ambiguous cases
- approximation errors

We have:

- No communication-efficient algorithm.
- No non-trivial lower bound.
Generalized Matrix Rank Estimation
Problem Set-up

Alice has PSD matrix $A_1 \in \mathbb{R}^{n \times n}$, Bob has PSD matrix $A_2 \in \mathbb{R}^{n \times n}$; $A := A_1 + A_2$

Goal: find $\text{rank}(A, c) = \text{“the number of eigenvalues of } A \text{ that are greater than } c\text{”}$.
Problem Set-up

Alice has PSD matrix $A_1 \in \mathbb{R}^{n \times n}$, Bob has PSD matrix $A_2 \in \mathbb{R}^{n \times n}$; $A := A_1 + A_2$

Goal: find $\text{rank}(A, c) = \text{“the number of eigenvalues of } A \text{ that are greater than } c\text{”}$.

- $c = 0 \Rightarrow \text{rank}(A, c) = \text{rank of } A$
- $c > 0 \Rightarrow \text{rank}(A, c) = \text{generalized rank of } A$
Problem Set-up

Alice has PSD matrix $A_1 \in \mathbb{R}^{n \times n}$, Bob has PSD matrix $A_2 \in \mathbb{R}^{n \times n}$; $A := A_1 + A_2$

Goal: find $\text{rank}(A, c) = \text{“the number of eigenvalues of } A \text{ that are greater than } c\text{”}$.

- $c = 0 \Rightarrow \text{rank}(A, c) = \text{rank of } A$
- $c > 0 \Rightarrow \text{rank}(A, c) = \text{generalized rank of } A$

Equivalent Alternative Set-up: Alice has matrix $X_1 \in \mathbb{R}^{n \times m}$, Bob has matrix $X_2 \in \mathbb{R}^{n \times m}$; $X := [X_1 \ X_2]$

Goal: find the number of singular values of X that are greater than c.
Applications

Many algorithm requires the knowledge of generalized rank in order to set hyper-parameters:

- **PCA**: set the number of principle components.
- **Personalized Recommendation**: user $v_u \in \mathbb{R}^d$, movie $v_m \in \mathbb{R}^d$.
 - Recommend movies by sorting $\text{affinity} = \langle v_u, v_m \rangle$.
 - Set d by the generalized rank of user-movie matrix.
- **Matrix Completion**: set the nuclear-norm regularization coefficient.
- **Spectral Clustering**: set the number of clusters.
Applications

Many algorithm requires the knowledge of generalized rank in order to set hyper-parameters:

- **PCA**: set the number of principle components.
- **Personalized Recommendation**: user $v_u \in \mathbb{R}^d$, movie $v_m \in \mathbb{R}^d$.
 - Recommend movies by sorting affinity $= \langle v_u, v_m \rangle$.
 - Set d by the generalized rank of user-movie matrix.
- **Matrix Completion**: set the nuclear-norm regularization coefficient.
- **Spectral Clustering**: set the number of clusters.

Power method has $\tilde{\Omega}(n^2)$ communication complexity.
Our algorithm has $\tilde{\Omega}(n)$ communication complexity.
Approximate Algorithm

In many applications, we don’t need exact result.

A rank estimator \hat{r} is (ϵ, δ)-approximate if

$$(1 - \delta)\text{rank}(A, c + \epsilon) \leq \hat{r}(A, c) \leq (1 + \delta)\text{rank}(A, c - \epsilon)$$

- ϵ: allow mistakes on ambiguous eigenvalues between $(c - \epsilon, c + \epsilon)$.
- δ: relative approximation error.
For \((\epsilon, \delta)\)-approximate algorithms, we can define:

Deterministic Complexity: minimum amount of communication (bits) to guarantee that \(\hat{r}\) is always \((\epsilon, \delta)\)-approximate.

Randomized Complexity: minimum amount of communication (bits) to guarantee that \(\hat{r}\) is \((\epsilon, \delta)\)-approximate with high probability.
Communication Complexity of Approximate Algorithms

For \((\epsilon, \delta)\)-approximate algorithms, we can define:

Deterministic Complexity: minimum amount of communication (bits) to guarantee that \(\hat{r}\) is always \((\epsilon, \delta)\)-approximate.

Randomized Complexity: minimum amount of communication (bits) to guarantee that \(\hat{r}\) is \((\epsilon, \delta)\)-approximate with high probability.

Deterministic v.s. Randomized

Example: Alice has \(x \in \{0, 1\}^n\), Bob has \(y \in \{0, 1\}^n\); judge if \(x = y\).

- Deterministic: \(\Theta(n)\) communication.
- Randomized: \(\tilde{\Theta}(1)\) communication.
Communication Complexity of Approximate Algorithms

For \((\epsilon, \delta)\)-approximate algorithms, we can define:

Deterministic Complexity: minimum amount of communication (bits) to guarantee that \(\hat{r}\) is always \((\epsilon, \delta)\)-approximate.

Randomized Complexity: minimum amount of communication (bits) to guarantee that \(\hat{r}\) is \((\epsilon, \delta)\)-approximate with high probability.

Deterministic v.s. Randomized

Example: Alice has \(x \in \{0, 1\}^n\), Bob has \(y \in \{0, 1\}^n\); judge if \(x = y\).

- **Deterministic**: \(\Theta(n)\) communication.
- **Randomized**: \(\tilde{\Theta}(1)\) communication.

Randomized algorithms could be substantially more efficient!
Deterministic Algorithms for Generalized Rank Estimation
Upper Bound

Upper bound is trivial: Bob sends A_2 to Alice (after discretization).

Communication cost $= \tilde{O}(n^2)$.
Upper Bound

Upper bound is trivial: Bob sends A_2 to Alice (after discretization).

Communication cost = $\tilde{O}(n^2)$.

Is there a more efficient algorithm?

Probably yes, because $O(\log n)$ bits are sufficient to encode the answer.
Theorem (lower bound for deterministic algorithm)

To implement a deterministic \((\frac{1}{40}, \frac{1}{12})\)-approximate algorithm, \(\Omega(n^2)\) bits must be communicated.

- No deterministic algorithm is substantially better than the trivial algorithm.
Randomized Algorithms for Generalized Rank Estimation
Polynomial Operator on Matrices

Assume:

- The eigenvalues of A are in $[0, 1]$. (by normalization)
- $f(x) = \sum_{i=0}^{p} a_i x^i : \mathbb{R} \rightarrow \mathbb{R}$ is a polynomial function.

Treat f as an operator on matrix A:

$$f(A) = \sum_{i=0}^{p} a_i A^i$$
Polynomial Operator on Matrices

Properties of $f(A)$:

- If λ is an eigenvalue of A, then $f(\lambda)$ is an eigenvalue of $f(A)$.

Yuchen Zhang (UC Berkeley) Generalized Matrix Rank Estimation April 2015 16 / 21
Polynomial Operator on Matrices

Properties of $f(A)$:

- If λ is an eigenvalue of A, then $f(\lambda)$ is an eigenvalue of $f(A)$.
- Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. If $g \sim N(0, I)$, then:

$$
\mathbb{E}[\|f(A)g\|_2^2] = \text{trace}[f(A)\mathbb{E}[gg^T]] = \text{trace}[f(A)] = \sum_{i=1}^{n} f(\lambda_i)
$$
Polynomial Operator on Matrices

Properties of $f(A)$:

- If λ is an eigenvalue of A, then $f(\lambda)$ is an eigenvalue of $f(A)$.
- Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. If $g \sim N(0, I)$, then:

$$
\mathbb{E}[\|f(A)g\|_2^2] = \text{trace}[f(A)\mathbb{E}[gg^T]] = \text{trace}[f(A)] = \sum_{i=1}^{n} f(\lambda_i)
$$

- If f is of degree-p, then $f(A)g$ can be computed by communicating $\tilde{O}(pn)$ bits:

 Round 1 : compute $Ag = A_1g + A_2g$
 Round 2 : compute $A^2g = A_1(Ag) + A_2(Ag)$

 Round p : compute $A^pg = A_1(A^{p-1}g) + A_2(A^{p-1}g)$

Finally, compute $f(A)g = \sum_{i=0}^{p} a_i(A^i g)$.
Polynomial Approximation

Construct a polynomial function \(f \) of order \(p \sim \log(n) \) and satisfies:

\[
\mathbb{I}(x > c + \epsilon) \lesssim f(x) \lesssim \mathbb{I}(x > c - \epsilon) \quad \text{for all} \quad x \in [0, 1]
\]
Polynomial Approximation

Construct a polynomial function f of order $p \sim \log(n)$ and satisfies:

$$
I(x > c + \epsilon) \preceq f(x) \preceq I(x > c - \epsilon) \quad \text{for all } x \in [0, 1]
$$

Then:

- $\mathbb{E}[\|f(A)g\|_2^2] = \sum_{i=1}^{n} f(\lambda_i)$ is a $(\epsilon, 0)$-approximate estimator because:

 $$
 \text{rank}(A, c + \epsilon) = \sum_{i=1}^{n} I(\lambda_i > c + \epsilon) \preceq \sum_{i=1}^{n} f(\lambda_i) \preceq \sum_{i=1}^{n} I(\lambda_i > c - \epsilon) = \text{rank}(A, c - \epsilon)
 $$
Polynomial Approximation

Construct a polynomial function f of order $p \sim \log(n)$ and satisfies:

$$\mathbb{I}(x > c + \epsilon) \preceq f(x) \preceq \mathbb{I}(x > c - \epsilon) \quad \text{for all } x \in [0, 1]$$

Then:

- $\mathbb{E}[\|f(A)g\|_2^2] = \sum_{i=1}^{n} f(\lambda_i)$ is a $(\epsilon, 0)$-approximate estimator because:

 $$\text{rank}(A, c + \epsilon) = \sum_{i=1}^{n} \mathbb{I}(\lambda_i > c + \epsilon) \preceq \sum_{i=1}^{n} f(\lambda_i)$$

 $$\preceq \sum_{i=1}^{n} \mathbb{I}(\lambda_i > c - \epsilon) = \text{rank}(A, c - \epsilon)$$

- $\|f(A)g\|_2^2$ is a good approximate to $\mathbb{E}[\|f(A)g\|_2^2]$ ((ϵ, δ)-approximate).
Polynomial Approximation

Construct a polynomial function f of order $p \sim \log(n)$ and satisfies:

$$\mathbb{I}(x > c + \epsilon) \preceq f(x) \preceq \mathbb{I}(x > c - \epsilon) \quad \text{for all } x \in [0, 1]$$

Then:

- $\mathbb{E}[\|f(A)g\|_2^2] = \sum_{i=1}^{n} f(\lambda_i)$ is a $(\epsilon, 0)$-approximate estimator because:

 $$\text{rank}(A, c + \epsilon) = \sum_{i=1}^{n} \mathbb{I}(\lambda_i > c + \epsilon) \preceq \sum_{i=1}^{n} f(\lambda_i)$$

 $$\preceq \sum_{i=1}^{n} \mathbb{I}(\lambda_i > c - \epsilon) = \text{rank}(A, c - \epsilon)$$

- $\|f(A)g\|_2^2$ is a good approximate to $\mathbb{E}[\|f(A)g\|_2^2]$ ((ϵ, δ)-approximate).
- The communication cost for computing $\|f(A)g\|_2^2$ is $\tilde{O}(n)$.
Algorithm and Upper Bound

Algorithm:

1. Find polynomial function f satisfying the inequality of the last slide.
2. Sample a random Gaussian vector $g \sim N(0, I_{n \times n})$.
3. Communicate p rounds to compute $f(A)g$, then return $\|f(A)g\|_2^2$.

Upper Bound:

Theorem (upper bound for randomized algorithm)

For any constant $\epsilon, \delta > 0$, by appropriately choosing degree of function f, the proposed algorithm is (ϵ, δ)-approximate with high probability, and its communication cost is $\tilde{O}(n)$.
Algorithm and Upper Bound

Algorithm:
1. Find polynomial function f satisfying the inequality of the last slide.
2. Sample a random Gaussian vector $g \sim N(0, I_{n \times n})$.
3. Communicate p rounds to compute $f(A)g$, then return $\|f(A)g\|_2^2$.

Upper Bound:

Theorem (upper bound for randomized algorithm)
For any constant $\epsilon, \delta > 0$, by appropriately choosing degree of function f, the proposed algorithm is (ϵ, δ)-approximate with high probability, and its communication cost is $\tilde{O}(n)$.
Is the $\tilde{O}(n)$ upper bound improvable?
Probably yes, because $O(\log n)$ bits are sufficient to encode the answer.
Is the $\tilde{O}(n)$ upper bound improvable?
Probably yes, because $O(\log n)$ bits are sufficient to encode the answer.

Theorem (lower bound for randomized algorithm)

For $\epsilon = \delta = 0.2$, any randomized (ϵ, δ)-approximate algorithm must communicate $\Omega(n)$ bits.
Is the $\tilde{O}(n)$ upper bound improvable?
Probably yes, because $O(\log n)$ bits are sufficient to encode the answer.

Theorem (lower bound for randomized algorithm)

For $\epsilon = \delta = 0.2$, any randomized (ϵ, δ)-approximate algorithm must communicate $\Omega(n)$ bits.

- The $\tilde{O}(n)$ algorithm cannot be substantially improved.
- Lower bound proved by reducing from the 2-SUM problem (Woodruff and Zhang)
Summary

- Estimate generalized matrix rank: the number of eigenvalues that are greater than a threshold.
- Allow the algorithm making mistake on ambiguous cases; allow approximation errors.
- Deterministic algorithm suffers $\Omega(n^2)$ communication complexity.
- Randomized algorithm enjoys $\tilde{O}(n)$ communication cost. There is $\Omega(n)$ lower bound.
Open Questions

- **Generalize to m players**: the upper bound is multiplied by m. Can we prove lower bound with this multiplicative factor?
- **Zero approximation error**: for $(\epsilon, 0)$-approximate algorithms, there is $\tilde{O}(n^2)$ upper bound and $\Omega(n)$ lower bound. Better algorithm? Tighter lower bound?
- Prove tight communication complexity bound for other linear algebra problems.