Universal Value Function Approximators

Tom Schaul, Dan Horgan, Karol Gregor, Dave Silver
Motivation

Forecasts about the environment

- = temporally abstract predictions (questions)
Motivation

Forecasts about the environment

- = temporally abstract predictions (questions)
- not necessarily related to reward
- conditioned on a behavior
- (aka GVF, nexting)
Motivation

Forecasts about the environment

• = temporally abstract predictions (questions)
• not necessarily related to reward
• conditioned on a behavior
• (aka GVFs, nexting)
• many of them
Motivation

Forecasts about the environment

- = temporally abstract predictions (questions)
- not necessarily related to reward
- conditioned on a behavior
- (aka GVF, nexting)
- many of them

Why?

- better, richer representations (features)
- decomposition, modularity
- temporally abstract planning, long horizons
Concretely

Subgoal forecasts
Concretely

Subgoal forecasts

• Reaching any of a set of states, then
 • the episode terminates ($\gamma = 0$)
 • and a pseudo-reward of 1 is given
Concretely

Subgoal forecasts

- Reaching any of a set of states, then
 - The episode terminates ($\gamma = 0$)
 - And a pseudo-reward of 1 is given
- Various time-horizons induced by γ
Concretely

Subgoal forecasts
• Reaching any of a set of states, then
 • the episode terminates ($\gamma = 0$)
 • and a pseudo-reward of 1 is given
• Various time-horizons induced by γ

Q-values
Concretely

Subgoal forecasts

• Reaching any of a set of states, then
 • the episode terminates ($\gamma = 0$)
 • and a pseudo-reward of 1 is given

• Various time-horizons induced by γ

Q-values

• for the subgoal-optimal policy
Concretely

Subgoal forecasts
• Reaching any of a set of states, then
 • the episode terminates ($\gamma = 0$)
 • and a pseudo-reward of 1 is given
• Various time-horizons induced by γ

Q-values
• for the subgoal-optimal policy

Neural networks as function approximators
Combinatorial numbers of subgoals
Combinatorial numbers of subgoals

Why?

- because the environment admits tons of forecasts
- any of them could be useful for the task
Combinatorial numbers of subgoals

Why?
• because the environment admits tons of forecasts
• any of them could be useful for the task

How?
Combinatorial numbers of subgoals

Why?
• because the environment admits tons of forecasts
• any of them could be useful for the task

How?
• efficiency
Combinatorial numbers of subgoals

Why?
• because the environment admits tons of forecasts
• any of them could be useful for the task

How?
• efficiency
• exploit shared structure in value space
Combinatorial numbers of subgoals

Why?
• because the environment admits tons of forecasts
• any of them could be useful for the task

How?
• efficiency
• exploit shared structure in value space
Combinatorial numbers of subgoals

Why?
• because the environment admits tons of forecasts
• any of them could be useful for the task

How?
• efficiency
• exploit shared structure in value space
• generalize to similar subgoals
Outline

• Motivation
 • learn values for forecasts
 • efficiently for many subgoals

• Approach
 • new architecture
 • one neat trick

• Results
Universal Value Function Approximator

- a single neural network producing $Q(s, a; g)$
Universal Value Function Approximator

- a single neural network producing $Q(s, a; g)$
 - for many subgoals g
 - generalize between subgoals
 - compact
Universal Value Function Approximator

- a single neural network producing $Q(s, a; g)$
 - for many subgoals g
 - generalize between subgoals
 - compact

- UVFA ("you-fah")
UVFA architectures

- Vanilla (monolithic)
UVFA architectures

- Vanilla (monolithic)
- Two-stream
UVFA architectures

- Vanilla (monolithic)
- Two-stream
 - separate embeddings ϕ and ψ for states and subgoals
 - Q-values = dot-product of embeddings
UVFA architectures

- Vanilla (monolithic)
- Two-stream
 - separate embeddings φ and ψ for states and subgoals
 - Q-values = dot-product of embeddings
 - (works better)
UVFA learning

- Method 1: bootstrapping

\[Q(s_t, a_t, g) \leftarrow \alpha \left(r_g + \gamma_g \max_{a'} Q(s_{t+1}, a', g) \right) + (1 - \alpha) Q(s_t, a_t, g) \]
UVFA learning

- Method 1: bootstrapping

\[
Q(s_t, a_t, g) \leftarrow \alpha \left(r_g + \gamma_g \max_{a'} Q(s_{t+1}, a', g) \right) \\
+ (1 - \alpha) Q(s_t, a_t, g)
\]

- some stability issues
UVFA learning

- **Method 1: bootstrapping**
 \[
 Q(s_t, a_t, g) \leftarrow \alpha \left(r_g + \gamma_g \max_{a'} Q(s_{t+1}, a', g) \right) \\
 + (1 - \alpha) Q(s_t, a_t, g)
 \]

 - some stability issues

- **Method 2:**
 - built training set of subgoal values
 - train with supervised objective
 - like neuro-fitted Q-learning
UVFA learning

• **Method 1:** bootstrapping

\[
Q(s_t, a_t, g) \leftarrow \alpha \left(r_g + \gamma_g \max_{a'} Q(s_{t+1}, a', g) \right) \\
+ (1 - \alpha) Q(s_t, a_t, g)
\]

• some stability issues

• **Method 2:**
 • built training set of subgoal values
 • train with supervised objective
 • like neuro-fitted Q-learning
 • (works better)
Outline

• Motivation
 • learn values for forecasts
 • efficiently for many subgoals

• Approach
 • new architecture: UVFA
 • one neat trick

• Results
Trick for supervised UVFA learning: FLE
Trick for supervised UVFA learning: FLE

Stage 1: Factorize

\[Q(s,a;g) \]

\[\phi(s,a) \] \[\psi(g) \]
Trick for supervised UVFA learning: FLE

Stage 1: **Factorize**
Stage 2: **Learn Embeddings**
Stage 1: Factorize (low-rank)
Stage 1: Factorize (low-rank)

- target embeddings for states and goals
Stage 2: Learn Embeddings

- regression from state/subgoal features to target embeddings
Stage 2: Learn Embeddings

- regression from state/subgoal features to target embeddings

(optional Stage 3): end-to-end fine-tuning
FLE vs end-to-end regression

- between 10x and 100x faster
Outline

- Motivation
 - learn values for forecasts
 - efficiently for many subgoals
- Approach
 - new architecture: UVFA
 - one neat trick: FLE
- Results
Results: Low-rank is enough
Results: Low-rank embeddings
Results: Low-rank embeddings
Results: Generalizing to new subgoals
Results: Transfer to new subgoals

Refining UVFA is much faster than learning from scratch
Results: Pacman pellet subgoals

training set

[Image of Pacman game maze]

test set

[Image of Pacman game maze]
Results: pellet subgoal values (test set)

“truth”
Results: pellet subgoal values (test set)

“truth”

UVFA generalization
Summary

- UVFA
 - compactly represent values
 - for many subgoals
 - generalization
 - transfer learning
Summary

• **UVFA**
 • compactly represent values
 • for many subgoals
 • generalization
 • transfer learning

• **FLE**
 • a trick for efficiently training UVFAs in 2 stages
 • side-effect: interesting embedding spaces
 • scales to complex domains (Pacman from raw vision)
Bonus results: Extrapolation

even to subgoals in unseen fourth room:

truth

UVFA
Bonus results: Extrapolation

even to subgoals in unseen fourth room:

truth

UVFA