Cheap Bandits

Manjesh K Hanawal
Dept. of ECE Boston University

Joint work with
Venkatesh Saligrama, (BU,USA)
Michal Valko (INRIA, France)
Remi Munos (DeepMind, UK)

ICML 2015, Lille, France
Problem setting

- **Undirected Graph**: \(G = (V, E, W) \)
 - \(N \) Nodes, \(W = \{ w_{ij} \} \): Weights

- **Signal on Graph**
 - Reward Function
 \(f : V \rightarrow \mathbb{R} \)
 - Smooth Function

- **Locate maxima**
 \[u^* = \arg \max_{u \in V} f(u) \]

- **Actions**:
 - Noisy Cluster Averages; Differentiated Costs

- **Goal**: In min Time (\(T \ll N \)) locate \(u^* \); Min Cost?
Application Scenarios

- Surveillance/Geography
 - Forest Cover Dataset: labeled samples on 30m2 region
 - Nodes: Regions of forest; Edge weights: feature similarity;
 - Rewards: Density of species. Locate highest density.
 - Actions: Zoom-in to a node (high cost); Zoom-out (low cost).

- Sensor networks:
- Radar search:
- Online advertisements:
Bandit Setting

- N-arm Bandit [Robbins’72, Lai-Robbins85]
 - N Independent Rewards/arms
 - Each arm ~ action
 - N-nodes ~ no coupling between nodes
 - Need T >> N.
 - Multiple looks per node

- We want T << N (this paper)
 - Exploit graph and reward structure
 - Very large # arms
Reward is Linear and Smooth

• Linear Reward
 o Fourier decomposition
 \[f = Q\alpha^* \]
 o Q: Eigenvectors of the graph Laplacian
 o Linearly Param Bandit: unknown param \(\alpha^* \)

• Smooth Reward
 o Neighboring nodes have similar rewards
 \[(u, v) \in E \implies f(u) \approx f(v) \]

\[\|Lf\|_2^2 = \sum_{u,v} w_{uv} (f(u) - f(v))^2 \leq c \]
 [Valko et. al. ICML’14]
Actions: Sample Node or Group

- Actions consists of subset of simplex:
 - Sample a node, \(u \):
 \[
 s(v) = \delta(u - v)
 \]
 - Sample a group of nodes \(A \subset V \):
 \[
 s(v) = \frac{1}{|A|} \sum_{u \in A} \delta(u - v)
 \]
 - General
 - Any Probability Mass Function
 \[
 S = \Delta^N
 \]
Cost of Actions

- Cost of actions:
 - Costly: Zoom-in to observe a particular node
 - Cheap: Zoom-out to observe average of a group

- Cost Model

\[C(s) = \sum_{(u,v) \in E} (s(u) - s(v))^2 = \| \mathcal{L} s \|_2^2 \]

- Why this model?
 - Larger the group size smaller the cost
 - Probing Nodes has high cost
 - In Fourier domain: Energy of s
Regret and Cost

- Policy (π): In round t, pick an action s_t
- Observe reward
 \[r_t(s_t) = \langle s_t, f \rangle + \epsilon_t = \sum_u s_t(u)f(u) + \epsilon_t \]
- Cumulative Regret
 \[R_T(\pi) = T f(u^*) - E \left[\sum_{t=1}^{T} r_t(s_t) \right] \]
- Cumulative Cost
 \[C_T(\pi) = \sum_{t=1}^{T} C(s_t) \]
Objective: Cost vs Regret

- Minimize Cost subject to ‘optimal’ Regret

\[
\min_{\pi, S} C_T(\pi) \quad \text{subject to} \quad R_T(\pi) \leq R^*_T
\]

- Best admissible policies

\[R^*_T = \min_{\pi, S} R_T(\pi)\]

- Conflicting goals:
 - Node actions give better estimates, but costly
 - Group actions give poor estimates, but cheaper

Optimal Regret with lower cost
What is a good Regret Constraint?

Lower Bound

- No smoothness constraint \((c \to \infty)\)
 - Finite set of actions
 \[
 R_T(\cdot) = \Omega(\sqrt{NT}) \quad \text{(Chu et. al. AISTATS’11)}
 \]

- Smooth Functions (This paper)

Proposition:
For Smooth function on graphs with effective dimension \(d\)

\[
R_T(\cdot) = \Omega(\sqrt{dT}) \quad \text{where} \quad d \ll N
\]

- Effective Dimension [Valko et.al. ICML’14]

\[
d = \max \left\{ i \mid \lambda_i(i - 1) \leq \frac{T}{\log(T + 1)} \right\}
\]
Intuition: Lower Bound

- Effective Dimension related to Graph Clusters
 - $d = \max \left\{ i \mid \lambda_i(i-1) \leq \frac{T}{\log(T+1)} \right\}$
 - d clusters
 - # Disconnected clusters or
 - # sparse clusters

Need to sample at least one node per cluster

$$\min_{\pi, S} C_T(\pi)$$
subject to $R_T(\pi) \leq \mathcal{O}(\sqrt{dT})$
Key Intuition: Locally Smooth Rewards

- Smoothness condition implies local smoothness
 - Group actions are good approximation to node action

\[u \in A \implies f(u) \sim \frac{1}{|A|} \sum_{v \in A} f(v) + \text{const} \]

Proposition: Let \(f \) be a smooth function on a graph with effective dimension \(d \). Then,

\[|f(i) - \frac{1}{\mathcal{N}_i} \sum_{j \in \mathcal{N}_i} f(j)| \leq \frac{c'd}{\lambda_{d+1}} \]

Cheap Bandits, ICML'15
CheapUCB: Algorithm

- Inspired by SpectralUCB Algorithm [Valko et. al. ICML14]
- SpectralUCB uses only node actions, cannot control cost
- CheapUCB uses both node actions and group actions

- **Phases:** Split the T into $J = |\log T|$ phases
- **Length:** Phase $j=1,2,\ldots J$ is of 2^{j-1} rounds
- **Select action:** In phase j select groups of size $J-j+1$ optimistically using UCB

Zoom-in slowly using progressively costly actions
Algorithm Performance

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Regret bound</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpectralUCB (ICML’14)</td>
<td>$\mathcal{O}(d\sqrt{T})$</td>
<td>T</td>
</tr>
<tr>
<td>CheapUCB (This paper)</td>
<td>$\mathcal{O}(d\sqrt{T})$</td>
<td>$\frac{3}{4}T$</td>
</tr>
</tbody>
</table>

CheapUCB provides good regret guarantee and also provides $O(T)$ cost saving.

CheapUCB achieves at least 25% reduction in cost!!
Network Experiments

Barabasi-Albert

Erdos-Renyi

Cheap Bandits, ICML'15
Forest Cover Dataset

- 50000 Samples; 7 Species
- 30m² regions; 2000 clusters
- Nodes: regions; Edges: Feature similarity
 - Connect K-NN
- Reward: Density of Desired Species
 - Continuous Classifier Output
Conclusions

• Cheap Bandit Formulation
 o Optima of Smooth signals on graphs
 o Minimize cost under optimal regret constraints

• Probes/Actions
 o Actions: Sample a node or a group
 o Cost of actions

• Effective Dimension governs regret
 o Time $<< N$, depends on statistical dimension

• Expand actions beyond node actions to reduce cost
 o CheapUCB algorithm
 o Reduces cost by at least by 25%
Thank You!!

Please visit our poster today: 2A