Learning from Corrupted Binary Labels via Class-Probability Estimation

Aditya Krishna Menon Brendan van Rooyen
Cheng Soon Ong Robert C. Williamson

National ICT Australia and The Australian National University

NICTA
Learning from binary labels

[Diagram with images and labels]
Learning from binary labels
Learning from binary labels
Learning from noisy labels
Learning from positive and unlabelled data
Learning from binary labels

Goal: good classification wrt distribution D
Learning from corrupted labels

Goal: good classification wrt (unobserved) distribution D
Can we learn a good classifier from corrupted samples?

Prior work: in special cases (with a rich enough model), yes! can treat samples as if uncorrupted! (Elkan and Noto, 2008), (Zhang and Lee, 2008), (Natarajan et al., 2013), (duPlessis and Sugiyama, 2014) ... This work: unified treatment via class-probability estimation analysis for general class of corruptions
Can we learn a good classifier from corrupted samples?

Prior work: in special cases (with a rich enough model), yes!
Can we learn a good classifier from corrupted samples?

Prior work: in special cases (with a rich enough model), yes!

- can treat samples as if uncorrupted!
- (Elkan and Noto, 2008), (Zhang and Lee, 2008), (Natarajan et al., 2013), (duPlessis and Sugiyama, 2014) ...
Can we learn a good classifier from corrupted samples?

Prior work: in special cases (with a rich enough model), yes!
- can treat samples as if uncorrupted!
- (Elkan and Noto, 2008), (Zhang and Lee, 2008), (Natarajan et al., 2013), (duPlessis and Sugiyama, 2014) ...

This work: unified treatment via class-probability estimation
- analysis for general class of corruptions
Assumed corruption model
Learning from binary labels: distributions

Fix instance space \mathcal{X} (e.g. \mathbb{R}^N)

Underlying distribution D over $\mathcal{X} \times \{\pm 1\}$

 Constituent components of D:

$$(P(x), Q(x), \pi) = (\mathbb{P}[X = x | Y = 1], \mathbb{P}[X = x | Y = -1], \mathbb{P}[Y = 1])$$
Learning from binary labels: distributions

Fix instance space \mathcal{X} (e.g. \mathbb{R}^N)

Underlying distribution D over $\mathcal{X} \times \{\pm 1\}$

Constituent components of D:

$$(P(x), Q(x), \pi) = (\mathbb{P}[X = x | Y = 1], \mathbb{P}[X = x | Y = -1], \mathbb{P}[Y = 1])$$

$$(M(x), \eta(x)) = (\mathbb{P}[X = x], \mathbb{P}[Y = 1 | X = x])$$
Learning from corrupted binary labels

Samples from corrupted distribution $\tilde{D} = (\tilde{P}, \tilde{Q}, \tilde{\pi})$

Goal: good classification wrt (unobserved) distribution D
Learning from corrupted binary labels

Samples from corrupted distribution $\bar{D} = (\bar{P}, \bar{Q}, \bar{\pi})$, where

$$\bar{P} = (1 - \alpha) \cdot P + \alpha \cdot Q$$
$$\bar{Q} = \beta \cdot P + (1 - \beta) \cdot Q$$

and $\bar{\pi}$ is arbitrary

- α, β are noise rates
- mutually contaminated distributions (Scott et al., 2013)

Goal: good classification wrt (unobserved) distribution D
Special cases

Label noise
Labels flipped w.p. ρ

$\bar{\pi} = (1 - 2\rho) \cdot \pi + \rho$

$\alpha = \bar{\pi}^{-1} \cdot (1 - \pi) \cdot \rho$

$\beta = (1 - \bar{\pi})^{-1} \cdot \pi \cdot \rho$

PU learning
Observe M instead of Q

$\bar{\pi} = \text{arbitrary}$

$\bar{P} = 1 \cdot P + 0 \cdot Q$

$\bar{Q} = M$

$= \pi \cdot P + (1 - \pi) \cdot Q$
Corrupted class-probabilities

Structure of corrupted class-probabilities underpins analysis
Corrupted class-probabilities

Structure of corrupted class-probabilities underpins analysis

Proposition

For any D, \bar{D},

$$\bar{\eta}(x) = \phi_{\alpha, \beta, \pi}(\eta(x))$$

where $\phi_{\alpha, \beta, \pi}$ is strictly monotone for fixed α, β, π.

Follows from Bayes' rule:

$$\bar{\eta}(x) = \frac{1}{p} \eta(x)$$

$$= p \cdot \frac{1}{a \cdot \eta(x) + b \cdot \eta(x) + (1 - a) \cdot \eta(x) + (1 - b) \cdot \eta(x)}$$
Corrupted class-probabilities

Structure of corrupted class-probabilities underpins analysis

Proposition

For any \(D, \bar{D}, \)

\[
\tilde{n}(x) = \phi_{\alpha,\beta,\pi}(n(x))
\]

where \(\phi_{\alpha,\beta,\pi} \) is strictly monotone for fixed \(\alpha, \beta, \pi. \)

Follows from Bayes’ rule:

\[
\frac{\tilde{n}(x)}{1 -\tilde{n}(x)} = \frac{\pi}{1 - \pi} \cdot \frac{P(x)}{Q(x)}
\]
Corrupted class-probabilities

Structure of corrupted class-probabilities underpins analysis

Proposition

For any D, \bar{D},

$$\tilde{\eta}(x) = \phi_{\alpha, \beta, \pi}(\eta(x))$$

where $\phi_{\alpha, \beta, \pi}$ is strictly monotone for fixed α, β, π.

Follows from Bayes’ rule:

$$\frac{\tilde{\eta}(x)}{1 - \tilde{\eta}(x)} = \frac{\pi}{1 - \bar{\pi}} \cdot \frac{\bar{P}(x)}{\bar{Q}(x)} = \frac{\pi}{1 - \bar{\pi}} \cdot \frac{(1 - \alpha) \cdot \frac{P(x)}{Q(x)} + \alpha}{\beta \cdot \frac{P(x)}{Q(x)} + (1 - \beta)}.$$
Corrupted class-probabilities: special cases

Label noise

\[\tilde{\eta}(x) = (1 - 2\rho) \cdot \eta(x) + \rho \]

\(\rho\) unknown

(Ward et al., 2009)

PU learning

\[\tilde{\eta}(x) = \frac{\pi \cdot \eta(x)}{\pi \cdot \eta(x) + (1 - \pi) \cdot \pi} \]

\(\pi\) unknown

(Natarajan et al., 2013)
Roadmap

Kernel logistic regression
Roadmap

Exploit monotone relationship between η and $\bar{\eta}$

Kernel logistic regression
Classification with noise rates
Many classification measures optimised by $\text{sign}(\eta(x) - t)$

- 0-1 error $\rightarrow t = \frac{1}{2}$
- Balanced error $\rightarrow t = \pi$
- F-score \rightarrow optimal t depends on D
 - (Lipton et al., 2014, Koyejo et al., 2014)
Class-probabilities and classification

Many classification measures optimised by \(\text{sign}(\eta(x) - t) \)

- 0-1 error \(\rightarrow t = \frac{1}{2} \)
- Balanced error \(\rightarrow t = \pi \)
- F-score \(\rightarrow \) optimal \(t \) depends on \(D \)
 - (Lipton et al., 2014, Koyejo et al., 2014)

We can relate this to thresholding of \(\bar{\eta} \)!
Corrupted class-probabilities and classification

By monotone relationship,

\[\eta(x) > t \iff \tilde{\eta}(x) > \phi_{\alpha,\beta,\pi}(t). \]

Threshold \(\tilde{\eta} \) at \(\phi_{\alpha,\beta,\pi}(t) \rightarrow \text{optimal classification on } D \)

Can translate into regret bound e.g. for 0-1 loss
Story so far

Classification scheme requires:

- $\bar{\eta}$
- t
- α, β, π

Noise
Oracle

Nature

Corruptor

Class-prob estimator

Classifier

\[\text{sign}(\hat{\eta}(x) - \phi_{\hat{\alpha}, \hat{\beta}, \hat{\pi}}(t)) \]
Story so far

Classification scheme requires:

- $\bar{\eta} \rightarrow$ class-probability estimation
- t
- α, β, π

Kernel logistic regression

$$\text{sign}(\hat{\eta}(x) - \phi_{\hat{\alpha}, \hat{\beta}, \hat{\pi}}(t))$$
Story so far

Classification scheme requires:

- \(\tilde{\eta} \rightarrow \) class-probability estimation
- \(t \rightarrow \) if unknown, alternate approach (see poster)
- \(\alpha, \beta, \pi \)

\[
\hat{\eta}(x) - \phi_{\hat{\alpha}, \hat{\beta}, \hat{\pi}}(t)
\]

Kernel logistic regression
Story so far

Classification scheme requires:

- $\tilde{\eta} \rightarrow$ class-probability estimation
- $t \rightarrow$ if unknown, alternate approach (see poster)
- $\alpha, \beta, \pi \rightarrow$ can we estimate these?

![Diagram]

Kernel logistic regression

\[\text{sign}(\hat{\eta}(x) - \phi_{\hat{\alpha}, \hat{\beta}, \hat{\pi}}(t)) \]
Estimating noise rates: some bad news

π strongly non-identifiable!

- \(\pi \) allowed to be arbitrary (e.g. PU learning)

\(\alpha, \beta \) non-identifiable without assumptions (Scott et al., 2013)

Can we estimate \(\alpha, \beta \) under assumptions?
Assume that D is "weakly separable":

$$\min_{x \in \mathcal{X}} \eta(x) = 0$$

$$\max_{x \in \mathcal{X}} \eta(x) = 1$$

- i.e. \exists deterministically +’ve and -’ve instances
- weaker than full separability
Weak separability assumption

Assume that \mathcal{D} is “weakly separable”:

$$\min_{x \in \mathcal{X}} \eta(x) = 0$$

$$\max_{x \in \mathcal{X}} \eta(x) = 1$$

- i.e. \exists deterministically $+$ve and $-$ve instances
- weaker than full separability

Assumed range of η constrains observed range of $\bar{\eta}$!
Proposition

Pick any weakly separable D. Then, for any \bar{D},

$$\alpha = \frac{\eta_{\min} \cdot (\eta_{\max} - \bar{\pi})}{\bar{\pi} \cdot (\eta_{\max} - \eta_{\min})} \quad \text{and} \quad \beta = \frac{(1 - \eta_{\max}) \cdot (\bar{\pi} - \eta_{\min})}{(1 - \bar{\pi}) \cdot (\eta_{\max} - \eta_{\min})}$$

where

$$\eta_{\min} = \min_{x \in \mathcal{X}} \bar{\eta}(x)$$

$$\eta_{\max} = \max_{x \in \mathcal{X}} \bar{\eta}(x)$$

α, β can be estimated from corrupted data alone.
Estimating noise rates: special cases

Label noise

\[\rho = 1 - \eta_{\text{max}} \]
\[= \eta_{\text{min}} \]
\[\pi = \frac{\bar{\pi} - \eta_{\text{min}}}{\eta_{\text{max}} - \eta_{\text{min}}} \]

(Elkan and Noto, 2008),
(Liu and Tao, 2014)

c.f. mixture proportion estimate of (Scott et al., 2013)

PU learning

\[\alpha = 0 \]
\[\beta = \pi \]
\[\pi = \frac{1 - \eta_{\text{max}}}{\eta_{\text{max}}} \cdot \frac{\bar{\pi}}{1 - \bar{\pi}} \]

In these cases, \(\pi \) can be estimated as well
Optimal classification in general requires α, β, π
Optimal classification in general requires α, β, π

- when does $\phi_{\alpha,\beta,\pi}(t)$ not depend on α, β, π?

Kernel logistic regression
Classification without noise rates
Balanced error (BER) of classifier

Balanced error (BER) of a classifier \(f : \mathcal{X} \rightarrow \{ \pm 1 \} \) is:

\[
\text{BER}^D(f) = \frac{\text{FPR}^D(f) + \text{FNR}^D(f)}{2}
\]

for false positive and negative rates \(\text{FPR}^D(f), \text{FNR}^D(f) \)

- average classification performance on each class
- optimal classifier is \(\text{sign}(\eta(x) - \pi) \)
BER “immunity” under corruption

Proposition (c.f. (Zhang and Lee, 2008))

For any D, \bar{D}, and classifier $f : \mathcal{X} \rightarrow \{\pm 1\}$,

$$\text{BER}^{\bar{D}}(f) = (1 - \alpha - \beta) \cdot \text{BER}^D(f) + \frac{\alpha + \beta}{2}$$
BER “immunity” under corruption

Proposition (c.f. (Zhang and Lee, 2008))

For any \(D, \bar{D} \), and classifier \(f : \mathcal{X} \rightarrow \{ \pm 1 \} \),

\[
\text{BER}^{\bar{D}}(f) = (1 - \alpha - \beta) \cdot \text{BER}^{D}(f) + \frac{\alpha + \beta}{2}
\]

BER-optimal classifiers on clean and corrupted coincide

- \(\text{sign}(\eta(x) - \pi) = \text{sign}(\bar{\eta}(x) - \bar{\pi}) \)
BER “immunity” under corruption

Proposition (c.f. (Zhang and Lee, 2008))

For any D, \bar{D}, and classifier $f : \mathcal{X} \rightarrow \{\pm 1\}$,

$$\text{BER}^{\bar{D}}(f) = (1 - \alpha - \beta) \cdot \text{BER}^{D}(f) + \frac{\alpha + \beta}{2}$$

BER-optimal classifiers on clean and corrupted coincide

- $\text{sign}(\eta(x) - \pi) = \text{sign}(\bar{\eta}(x) - \bar{\pi})$

Minimise clean BER \rightarrow don’t need to know corruption rates!

- threshold on $\bar{\eta}$ does not need α, β, π
BER “immunity” & class-probability estimation

Trivially, we also have

\[
\text{regret}_{\text{BER}}^D(f) = (1 - \alpha - \beta)^{-1} \cdot \text{regret}_{\text{BER}}^D(f).
\]

i.e. good corrupted BER \(\implies\) good clean BER

- can make \(\text{regret}_{\text{BER}}^D(f) \rightarrow 0\) by class-probability estimation

Similar result for AUC (see poster)
BER “immunity” under corruption: proof

From (Scott et al., 2013),

\[
\begin{bmatrix}
FPR^D(f) & FNR^D(f)
\end{bmatrix}^T = \begin{bmatrix}
FPR^D(f) & FNR^D(f)
\end{bmatrix}^T \cdot \begin{bmatrix}
1 - \beta & -\alpha \\
-\beta & 1 - \alpha
\end{bmatrix}
\]

\[+ \begin{bmatrix}
\beta \\
\alpha
\end{bmatrix}^T,
\]
BER “immunity” under corruption: proof

From (Scott et al., 2013),

\[
\begin{bmatrix}
\text{FPR}^{\bar{D}}(f) & \text{FNR}^{\bar{D}}(f)
\end{bmatrix}^T = \begin{bmatrix}
\text{FPR}^{D}(f) & \text{FNR}^{D}(f)
\end{bmatrix}^T \cdot \begin{bmatrix}
1 - \beta & -\alpha \\
-\beta & 1 - \alpha
\end{bmatrix} + \begin{bmatrix}
\beta \\
\alpha
\end{bmatrix}^T,
\]

and \[
\begin{bmatrix}
1 \\
1
\end{bmatrix}
\] is an eigenvector of \[
\begin{bmatrix}
1 - \beta & -\alpha \\
-\beta & 1 - \alpha
\end{bmatrix}
\]
Are other measures “immune”?

BER is only (non-trivial) performance measure for which:

- corrupted risk = affine transform of clean risk
 - because of eigenvector interpretation
- corrupted threshold is independent of α, β, π
 - because of nature of $\phi_{\alpha,\beta,\pi}$

(see poster)

Other performance measures \rightarrow need (one of) α, β, π
Experiments
Experimental setup

Injected label noise on UCI datasets

Estimate corrupted class-probabilities via neural network

- well-specified if D linearly separable:

$$\eta(x) = \sigma(\langle w, x \rangle) \implies \tilde{\eta}(x) = a \cdot \sigma(\langle w, x \rangle) + b$$

Evaluate:

- reliability of noise estimates
- BER performance on clean test set
 - corrupted data used for training and validation
- 0-1 performance on clean test set (see poster)
Experimental results: noise rates

Estimated noise rates are generally reliable

![Segment Bias of Estimate](image)

![Spambase Bias of Estimate](image)

![Mnist Bias of Estimate](image)
Experimental results: BER immunity

Generally, low observed degradation in BER

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Noise</th>
<th>1 - AUC (%)</th>
<th>BER (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>segment</td>
<td>None</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>$(\rho_+, \rho_-) = (0.1, 0.0)$</td>
<td>0.00 ± 0.00</td>
<td>0.01 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>$(\rho_+, \rho_-) = (0.1, 0.2)$</td>
<td>0.02 ± 0.01</td>
<td>0.90 ± 0.08</td>
</tr>
<tr>
<td></td>
<td>$(\rho_+, \rho_-) = (0.2, 0.4)$</td>
<td>0.03 ± 0.01</td>
<td>3.24 ± 0.20</td>
</tr>
<tr>
<td>spambase</td>
<td>None</td>
<td>2.49 ± 0.00</td>
<td>6.93 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>$(\rho_+, \rho_-) = (0.1, 0.0)$</td>
<td>2.67 ± 0.02</td>
<td>7.10 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>$(\rho_+, \rho_-) = (0.1, 0.2)$</td>
<td>3.01 ± 0.03</td>
<td>7.66 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>$(\rho_+, \rho_-) = (0.2, 0.4)$</td>
<td>4.91 ± 0.09</td>
<td>10.52 ± 0.13</td>
</tr>
<tr>
<td>mnist</td>
<td>None</td>
<td>0.92 ± 0.00</td>
<td>3.63 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>$(\rho_+, \rho_-) = (0.1, 0.0)$</td>
<td>0.95 ± 0.01</td>
<td>3.56 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>$(\rho_+, \rho_-) = (0.1, 0.2)$</td>
<td>0.97 ± 0.01</td>
<td>3.63 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>$(\rho_+, \rho_-) = (0.2, 0.4)$</td>
<td>1.17 ± 0.02</td>
<td>4.06 ± 0.03</td>
</tr>
</tbody>
</table>
Conclusion
Learning from corrupted binary labels

Monotone relationship $\tilde{\eta}(x) = \phi_{\alpha, \beta, \pi}(\eta(x))$ facilitates:

- noise estimator
- class-prob estimator
- classifier

Kernel logistic regression

Range of $\hat{\eta}$

Omit for BER

$\text{sign}(\hat{\eta}(x) - \phi_{\hat{\alpha}, \hat{\beta}, \hat{\pi}}(t))$
Future work

Better noise estimators in special cases?

- c.f. (Elkan and Noto, 2008) when D separable

Fusion with “loss transfer” (Natarajan et al., 2013) approach

- assumes noise rates known
- better for misspecified models?
 - c.f. non-robustness of convex surrogate minimisation
Thanks!¹

¹Drop by the poster for more (Paper ID 69)