Structural Maxent Models

Vitaly Kuznetsov1

Joint work with Corinna Cortes2, Mehryar Mohri1,2 and Umar Syed2

1Courant Institute of Mathematical Sciences, New York University

2Google Research, New York
Species Habitat Modeling
Input: a corpus C, a sequence of words over vocabulary V.

Goal: estimate the probability of a sequence of words $P(w_1, \ldots, w_n)$.

Critical component of speech recognition and other natural language processing models.
Density Estimation

Unsupervised Learning Scenario:
- $S = (x_1, \ldots, x_m)$ an i.i.d. sample from unknown distribution \mathcal{D}.
- A feature mapping $\Phi : \mathcal{X} \rightarrow \mathcal{F}$.
- Find a distribution p that estimates \mathcal{D}.
Maxent Principle: Select the distribution that is the closest to the uniform, so that the average value of each feature matches its empirical value.

Key benefits:
- Diverse features can be used.
- Good theoretical guarantees.

Challenge: Is it possible to use a richer set of features and yet not overfit?
Outline

- Learning Scenario.
- Structural Maxent Principal.
- Duality.
- Learning Guarantees.
- Algorithm.
- Experiments.
Prior Work

- Maxent principle. (Jaynes, 1957, 1983)
- Maxent modeling in NLP. (Berger et al. 1996; Pietra et al. 1997; Malouf 2002; Manning & Klein, 2003; Ratnaparkhi, 2010)
- Maxent modeling in ecology. (Philips et. al., 2004, 2006; Elith et. al. 2011)
- Regularized Maxent. (Kazama & Tsujii, 2003; Chen & Rosenfeld, 2000; Lebanon & Lafferty, 2001; Dudik et. al., 2007)
- Bayesian interpretation. (Williams, 1994; Goodman, 2004)
Learning Setup: Families of Features

- H_1, \ldots, H_p families of feature maps.
- Feature mapping $\Phi : \mathcal{X} \rightarrow \mathcal{F} = \mathcal{F}_1 \times \cdots \times \mathcal{F}_p$.
- $\forall x \in \mathcal{X}, \Phi(x) = (\Phi_1(x), \ldots, \Phi_p(x))$.
- $\forall k \in \{1, \ldots, p\}, \Phi_{j,k} \in H_k$ and $\|\Phi_k\|_{\infty} \leq \Lambda$.

![Diagram showing families of feature maps](attachment:diagram.png)
Uniform Convergence Bounds

(Koltchinskii & Panchenko, 2002)

For any $\delta > 0$, with probability at least $1 - \delta$:

$$\left\| \mathbb{E}_{x \sim D} [\Phi_k(x)] - \mathbb{E}_{x \sim S} [\Phi_k(x)] \right\|_\infty \leq \sqrt{2 \mathcal{R}_m(H_k) + 2 \sqrt{\log \frac{2p}{\delta}} + \sqrt{\frac{\log 2m}{2m}}}$$

for all $k \in [1, p]$, where $\mathcal{R}_m(H_k)$ is the Rademacher complexity of H_k.
Structural Maxent Principal

Find distribution p closest to some distribution \(p_0 \) subject to uniform convergence constraints:

\[
\min_{p \in \Delta} D(p \parallel p_0), \quad \text{s.t. } \forall k \in [1, p] : \\
\left\| \mathbb{E}_{x \sim p} [\Phi_k(x)] - \mathbb{E}_{x \sim S} [\Phi_k(x)] \right\|_\infty \leq 2 \mathfrak{K}_m(H_k) + \beta,
\]

where

\[
D(p \parallel q) = \sum_{x \in \mathcal{X}} p[x] \log \frac{p[x]}{q[x]}
\]

is the relative entropy.
Dual Objective

\[G(w) = \frac{1}{m} \sum_{i=1}^{m} \log \left[\frac{p_w(x_i)}{p_0(x_i)} \right] - \sum_{k=1}^{p} \beta_k \|w_k\|_1, \]

- **Weights:** \(\beta_k = 2\mathcal{H}_m(H_k) + \beta. \)
- **Gibbs distribution:** \(p_w = \frac{p_0[x] e^{w \cdot \Phi(x)}}{Z_w}. \)
- **Partition function:** \(Z_w = \sum_{x \in \mathcal{X}} p_0[x] e^{w \cdot \Phi(x)}. \)
Theorem

Primal Struct Maxent problem is equivalent to the dual Struct Maxent problem $\sup_{w \in \mathbb{R}^N} G(w)$:

$$\sup_{w \in \mathbb{R}^N} G(w) = \min_{p} F(p).$$

Furthermore, let $p^* = \arg\min_{p} F(p)$, then, for any $\epsilon > 0$ and any w such that $\left| G(w) - \sup_{w \in \mathbb{R}^N} G(w) \right| < \epsilon$, the following holds:

$$D(p^* \parallel p_w) \leq \epsilon.$$
Generalization Bound

Theorem

Fix $\delta > 0$. Let $\hat{\mathbf{w}}$ be a solution to the dual Struct Maxent problem with $\beta = \Lambda \sqrt{\frac{\log \frac{2p}{\delta}}{2m}}$. Then with probability at least $1 - \delta$,

$$
\mathcal{L}_D(\hat{\mathbf{w}}) \leq \inf_{\mathbf{w}} \mathcal{L}_D(\mathbf{w}) + 2 \sum_{k=1}^{p} \|\mathbf{w}_k\|_1 \left[2\mathcal{K}_m(H_k) + \Lambda \sqrt{\frac{\log \frac{2p}{\delta}}{2m}} \right],
$$

where $\mathcal{L}_D(\mathbf{w}) = \mathbb{E}_{x \sim D}[-\log p_\mathbf{w}[x]]$.
Generalization Bound: Consequences

- Favorable learning guarantees for Structural Maxent models.
- Learning with complex features is possible as long as their weight is small.
Unconstrained optimization: \(\inf_w F(w) \) with

\[
F(w) = \sum_{k=1}^{p} \beta_k \| w_k \|_1 - w \cdot \mathbb{E}[\Phi] + \log \left[\sum_{x \in \mathcal{X}} p_0[x] e^{w \cdot \Phi(x)} \right],
\]

and \(\beta_k = \beta + 2 \Re m(H_k) \) for \(k \in [1, p] \).
Coordinate Descent

Repeat until convergence:

• Find descent direction

\[(k, j) = \arg\max_{(k,j)} |\delta_{(k,j)} F(w_{t-1})|,\]

where \(\delta_{(k,j)} F(w_{t-1})\) is the subgradient of \(F(w_{t-1})\) in the direction \((k, j)\).

• Find step size \(\eta\) (line search; closed-form size).

\[w_t = w_{t-1} + \eta e_{(k,j)}.\]

Convergence analysis:

• Convergence for closed-form step sizes.
• Linear convergence for line search.
Experiments

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Maxent</th>
<th>L_1-Maxent</th>
<th>Structural Maxent</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. variegatus</td>
<td>19.95</td>
<td>15.67</td>
<td>13.36</td>
</tr>
<tr>
<td></td>
<td>(0.54)</td>
<td>(0.33)</td>
<td>(0.28)</td>
</tr>
<tr>
<td>m. minutus</td>
<td>17.41</td>
<td>12.20</td>
<td>10.25</td>
</tr>
<tr>
<td></td>
<td>(0.87)</td>
<td>(0.78)</td>
<td>(0.30)</td>
</tr>
<tr>
<td>arson</td>
<td>5.93</td>
<td>5.75</td>
<td>5.68</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>murders</td>
<td>5.38</td>
<td>5.23</td>
<td>5.17</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>rapes</td>
<td>6.42</td>
<td>6.22</td>
<td>6.16</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>robberies</td>
<td>5.14</td>
<td>5.00</td>
<td>4.94</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>burglary</td>
<td>6.04</td>
<td>5.85</td>
<td>5.78</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>assault</td>
<td>6.65</td>
<td>6.35</td>
<td>6.30</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>larceny</td>
<td>5.83</td>
<td>5.65</td>
<td>5.58</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>auto theft</td>
<td>5.93</td>
<td>5.75</td>
<td>5.68</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>traffic</td>
<td>14.72</td>
<td>13.85</td>
<td>13.00</td>
</tr>
<tr>
<td></td>
<td>(1.11)</td>
<td>(0.24)</td>
<td>(1.01)</td>
</tr>
</tbody>
</table>
Species Habitat Model
Conclusion

- New family of density estimation models.
- Strong data-dependent learning guarantees.
- Good performance in practice.
- Generalization using arbitrary Bregman divergences.