Is Feature Selection Secure against Training Data Poisoning?

Huang Xiao2, Battista Biggio1, Gavin Brown3, Giorgio Fumera1, Claudia Eckert2, Fabio Roli1

(1) Dept. Of Electrical and Electronic Engineering, University of Cagliari, Italy
(2) Department of Computer Science, Technische Universität München, Germany
(3) School of Computer Science, University of Manchester, UK
Motivation

• Increasing number of services and apps available on the Internet
 – Improved user experience

• Proliferation and sophistication of attacks and cyberthreats
 – Skilled / economically-motivated attackers

• Several security systems use machine learning to detect attacks
 – but ... is machine learning secure enough?
Is Feature Selection Secure?

- **Adversarial ML**: security of *learning and clustering* algorithms
 - Barreno et al., 2006; Huang et al., 2011; Biggio et al., 2014; 2012; 2013a; Brueckner et al., 2012; Globerson & Roweis, 2006

- **Feature Selection**
 - High-dimensional feature spaces (e.g., spam and malware detection)
 - Dimensionality reduction to improve interpretability and generalization

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 ... \\
 ... \\
 x_d
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 x_{(1)} \\
 x_{(2)} \\
 ... \\
 x_{(k)}
\end{pmatrix}
\]

- How about the **security** of feature selection?
Feature Selection under Attack

Attacker Model

- **Goal** of the attack
- **Knowledge** of the attacked system
- **Capability** of manipulating data
- **Attack strategy**
Attacker’s Goal

- **Integrity Violation**: to perform malicious activities without compromising normal system operation
 - enforcing selection of features to facilitate evasion at test time

- **Availability Violation**: to compromise normal system operation
 - enforcing selection of features to maximize generalization error

- **Privacy Violation**: gaining confidential information on system users
 - reverse-engineering feature selection to get confidential information
Attacker’s Knowledge

- **Perfect knowledge**
 - upper bound on performance degradation under attack

- **Limited knowledge**
 - attack on surrogate data sampled from same distribution
Attacker’s Capability

- **Inject points** into the **training** data

- **Constraints on data manipulation**
 - Fraction of the training data under the attacker’s control
 - Application-specific constraints

- **Example on PDF data**
 - PDF file: hierarchy of interconnected objects
 - Objects can be added but not easily removed without compromising the file structure

```
13 0 obj
<< /Kids [ 1 0 R 11 0 R ]
/Type /Page
... >> end obj
```

```
17 0 obj
<< /Type /Encoding
/Differences [ 0 /C0032 ] >> endobj
```
Attack Scenarios

• Different potential attack scenarios depending on assumptions on the attacker’s goal, knowledge, capability
 – Details and examples in the paper

• Poisoning Availability Attacks
 Enforcing selection of features to maximize generalization error
 – **Goal**: availability violation
 – **Knowledge**: perfect / limited
 – **Capability**: injecting samples into the training data
Embedded Feature Selection Algorithms

- **Linear models** \(f(x) = w^T x + b \)
 - Select features according to \(|w|\)

\[
\min_{w,b} \mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \lambda \Omega(w)
\]

\[
= \frac{1}{2} (f(x_i) - y_i)^2
\]

- **LASSO**
 - Tibshirani, 1996
- **Ridge Regression**
 - Hoerl & Kennard, 1970
- **Elastic Net**
 - Zou & Hastie, 2005
Poisoning Embedded Feature Selection

- **Attacker’s objective**
 - to maximize generalization error on untainted data

\[
\max_{\mathbf{x}_c} \mathcal{W} = \frac{1}{m} \sum_{j=1}^{m} \ell(\hat{y}_j, f(\hat{x}_j)) + \lambda \Omega(\mathbf{w})
\]

... w.r.t. choice of the attack point

- **Solution:** subgradient-ascent technique

Loss estimated on surrogate data (excluding the attack point)

\[
\hat{\mathcal{D}} = \{(\hat{x}_i, \hat{y}_i) \}_{i=1}^{m}
\]

Algorithm is trained on surrogate data (including the attack point)

\[
\mathcal{L}(\hat{\mathcal{D}} \cup \{\mathbf{x}_c\})
\]
Gradient Computation

$$\frac{\partial W}{\partial x_c} = \frac{1}{m} \sum_{j=1}^{m} (f(\hat{x}_j) - \hat{y}_j) \left(x_j^\top \frac{\partial w}{\partial x_c} + \frac{\partial b}{\partial x_c} \right) + \lambda \frac{\partial \Omega}{\partial w} \frac{\partial w}{\partial x_c}$$

How does the solution change w.r.t. x_c?

KKT conditions

$$\frac{\partial \mathcal{L}^\top}{\partial w} = \frac{1}{m+1} \sum_{j=1}^{m+1} (f(\hat{x}_j) - \hat{y}_j) \hat{x}_j + \lambda \frac{\partial \Omega}{\partial w}^\top = 0$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{1}{m+1} \sum_{j=1}^{m+1} (f(\hat{x}_j) - \hat{y}_j) = 0$$

Subgradient is unique at the optimal solution!

$$\frac{\partial \Omega}{\partial w} = -\frac{1}{\lambda} \frac{1}{m+1} \sum_{j=1}^{m+1} (f(\hat{x}_j) - \hat{y}_j) \hat{x}_i^\top$$
Gradient Computation

- We require the KKT conditions to hold under perturbation of x_c

\[
\begin{bmatrix}
\Sigma + \lambda v & \mu \\
\mu^\top & 1
\end{bmatrix}
\begin{bmatrix}
\frac{\partial w}{\partial x_c} \\
\frac{\partial b}{\partial x_c}
\end{bmatrix}
= -\frac{1}{m + 1}
\begin{bmatrix}
M \\
w^\top
\end{bmatrix}
\]

\[
\frac{\partial W}{\partial x_c} = \frac{1}{m} \sum_{j=1}^{m} (f(\hat{x}_j) - \hat{y}_j) \left(\hat{x}_j^\top \frac{\partial w}{\partial x_c} + \frac{\partial b}{\partial x_c} \right) + \lambda \frac{\partial \Omega}{\partial w} \frac{\partial w}{\partial x_c}
\]

Gradient is now uniquely determined
Poisoning Attack Algorithm

Algorithm 1 Poisoning Embedded Feature Selection

Input: \(\hat{\mathcal{D}} \), the (surrogate) training data; \(\{x_c^{(0)}, y_c\}_{c=1}^q \), the \(q \) initial attack points with (given) labels; \(\beta \in (0, 1) \); and \(\sigma, \varepsilon \), two small positive constants.

Output: \(\{x_c\}_{c=1}^q \), the final attack points.

1: \(p \leftarrow 0 \)
2: **repeat**
3: **for** \(c = 1, \ldots, q \) **do**
4: \(\{w, b\} \leftarrow \text{learn the classifier on } \hat{\mathcal{D}} \cup \{x_c^{(p)}\}_{c=1}^q \).
5: Compute \(\nabla \mathcal{W} = \frac{\partial \mathcal{W}(x_c^{(p)})}{\partial x_c} \) according to Eq. (4).
6: Set \(d = \Pi_B \left(x_c^{(p)} + \nabla \mathcal{W} \right) - x_c^{(p)} \) and \(k \leftarrow 0 \).
7: **repeat** \{line search to set the gradient step \(\eta \} \)
8: Set \(\eta \leftarrow \beta^k \) and \(k \leftarrow k + 1 \)
9: \(x_c^{(p+1)} \leftarrow x_c^{(p)} + \eta d \)
10: **until** \(\mathcal{W}(x_c^{(p+1)}) \leq \mathcal{W}(x_c^{(p)}) - \sigma \eta \|d\|^2 \)
11: **end for**
12: \(p \leftarrow p + 1 \)
13: **until** \(\|\mathcal{W}(\{x_c^{(p)}\}_{c=1}^q) - \mathcal{W}(\{x_c^{(p-1)}\}_{c=1}^q)\| < \varepsilon \)
14: **return:** \(\{x_c\}_{c=1}^q = \{x_c^{(p)}\}_{c=1}^q \)
Experiments on PDF Malware Detection

- **PDF**: hierarchy of interconnected objects (keyword/value pairs)

 13 0 obj
 << /Kids [1 0 R 11 0 R]
 /Type /Page
 ... >> end obj

 17 0 obj
 << /Type /Encoding
 /Differences [0 /C0032] >>
 endobj

- **Features**: keyword counts

<table>
<thead>
<tr>
<th>Feature</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>/Type</td>
<td>2</td>
</tr>
<tr>
<td>/Page</td>
<td>1</td>
</tr>
<tr>
<td>/Encoding</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Learner’s task**: to classify *benign* vs *malware* PDF files
- **Attacker’s task**: to maximize classification error by injecting poisoning attack samples
 - Only feature increments are considered (object insertion)
 - Object removal may compromise the PDF file

Maiorca et al., 2012; 2013; Smutz & Stavrou, 2012; Srndic & Laskov, 2013
Experimental Results

Data: 300 (TR) and 5,000 (TS) samples – 114 features

Similar results obtained for limited-knowledge attacks!
Experimental Results

$IC(A, B) = \frac{rd - k^2}{k(d - k)} \in [-1, +1]$

Kuncheva et al., 2007

| A: selected features in the absence of attack |
| B: selected features under attack |
| k: number of features selected out of d |
| r: common features between the two sets |
Conclusions and Future Work

• Framework for **security evaluation** of **feature selection** under attack
 – Poisoning attacks against embedded feature selection algorithms

• Poisoning can significantly affect feature selection
 – LASSO significantly vulnerable to poisoning attacks

 L1 regularization: stability against random noise, but not against adversarial (worst-case) noise?

• **Future research directions**
 – Error bounds on the impact of poisoning on learning algorithms
 – Secure / robust feature selection algorithms
Thanks for your attention!

Any questions?
Experimental Results

Classification Error

Feature Subset Size

Feature Stability (k=30)

Feature Stability (k=50)

Perfect Knowledge

Limited Knowledge

http://pralab.diee.unica.it