Gated Feedback
Recurrent Neural Networks

Junyoung Chung, Caglar Gulchre, Kyunghyun Cho and Yoshua Bengio

Presenter: Junyoung Chung
Challenges in Sequence Modelling

• Sequences contain hierarchical structures like images
 • Characters / phonemes change fast
 • Topics of a corpus change slowly
 • Genders of an utterance do not change

• RNN should encode multiple time-scale temporal dependencies
 • RNNs process a sequence in a step by step manner
Multi-Scale RNNs

- A Hierarchical RNN [Hihi and Bengio, 1995]
 - Sequences have hierarchical temporal dependencies
 - Multiple levels of states operating at different time-scales, e.g. power of 2
 - Slow level (coarse time-scale) can affect fast level (fine time-scale)
Multi-Scale RNNs

- A Clockwork RNN [Koutník et al., 2014]

 - Multiple modules operating with pre-defined clock rates

 - i-th module updates its states when $t \mod 2^{i-1} = 0$

 - Slow module (coarse time-scale) can affect fast module (fine time-scale)
Multi-Scale RNNs

• Why are multi-scale representations useful?

 - RNNs use richer representation to draw desired output at each timestep
 - Skip connections [Graves, 2013] from all hidden layers to output layer
Multi-Scale RNNs

• Why are top-down connections helpful?

 - Dynamics of coarser time-scales summarize global structure
 - Dynamics of coarser time-scales can help inference of finer time-scales
 - We do not precisely know the update rates
Gated Feedback RNNs

• Interesting architectural modifications to RNNs

 • Can we adaptively learn the update rate of each recurrent layer?

 • Can multi-scale representations used to compute the hidden states of each recurrent layer?
Gated Feedback RNNs

- Interesting architectural modifications to RNNs
 - Can we adaptively learn the update rate of each recurrent layer? **Yes**
 - Can multi-scale representations used to compute the hidden states of each recurrent layer? **Yes**
Recurrent Activation Functions

- Recurrent activation functions determine the power of RNNs
 - Deterministic dynamics
 - Gated activation functions are more powerful e.g., GRU, LSTM
Global Reset Gates

- **Global reset gates** adaptively control the connectivity patterns

 - Inputs: current state of layer below, concatenation of all previous states

 \[g^{i \rightarrow j} = \text{sigm} \left(w^{i \rightarrow j}_{g} h^{j-1}_t + u^{i \rightarrow j}_{g} h^{*}_{t-1} \right) \]

 - Number of global reset gates should be number of layers\(^2\)

<table>
<thead>
<tr>
<th>Standard RNNs</th>
<th>Gated Feedback RNNs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tanh)</td>
<td>(\tanh \left(W^j h^{j-1}t + \sum{i=1}^{L} g^{i \rightarrow j} U^{i \rightarrow j} h^i_{t-1} \right))</td>
</tr>
<tr>
<td>(\text{GRU})</td>
<td>(\text{GRU})</td>
</tr>
<tr>
<td>(\tilde{c}^j_t = \tanh(W h^{j-1}t + U h^{j}{t-1}))</td>
<td>(\tilde{c}^j_t = \tanh \left(W^j h^{j-1}t + \sum{i=1}^{L} g^{i \rightarrow j} U^{i \rightarrow j} h^i_{t-1} \right))</td>
</tr>
<tr>
<td>(\tilde{h}^j_t = \tanh(W h^{j-1}t + r \odot U h^{j}{t-1}))</td>
<td>(\tilde{h}^j_t = \tanh \left(W^j h^{j-1}t + r^j_t \odot \sum{i=1}^{L} g^{i \rightarrow j} U^{i \rightarrow j} h^i_{t-1} \right))</td>
</tr>
<tr>
<td>(\text{LSTM})</td>
<td>(\text{LSTM})</td>
</tr>
<tr>
<td>(\tilde{c}^j_t = \tanh(W h^{j-1}t + U h^{j}{t-1}))</td>
<td>(\tilde{c}^j_t = \tanh \left(W^j h^{j-1}t + \sum{i=1}^{L} g^{i \rightarrow j} U^{i \rightarrow j} h^i_{t-1} \right))</td>
</tr>
</tbody>
</table>
Experiments

• Tasks
 - Character-level language modelling
 - Python program evaluation

• Models
 - Three RNN architectures
 - Single layer RNN, Stacked RNNs, Gated Feedback RNNs
 - Three activation functions
 - Affine transformation + \tanh, GRU, LSTM
Character-Level Language Modelling

- Measure the bits-per-character \(E[- \log_2 P(x_{t+1} | h_t)] \)

- Constrained model size

<table>
<thead>
<tr>
<th></th>
<th>tanh</th>
<th>GRU</th>
<th>LSTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-layer</td>
<td>1.937</td>
<td>1.883</td>
<td>1.887</td>
</tr>
<tr>
<td>Stacked</td>
<td>1.892</td>
<td>1.871</td>
<td>1.868</td>
</tr>
<tr>
<td>Gated Feedback</td>
<td>1.949</td>
<td>1.855</td>
<td>1.842</td>
</tr>
<tr>
<td>Gated Feedback L</td>
<td>–</td>
<td>1.813</td>
<td>1.789</td>
</tr>
<tr>
<td>Feedback*</td>
<td>–</td>
<td>–</td>
<td>1.854</td>
</tr>
</tbody>
</table>

- Unconstrained model size

<table>
<thead>
<tr>
<th></th>
<th>MRNN</th>
<th>Stacked LSTM</th>
<th>GF-LSTM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.60</td>
<td>1.67</td>
<td>1.58</td>
</tr>
</tbody>
</table>

- MRNN [Sutskever et al., 2011], 86 characters, XML tags removed
- Stacked LSTM [Graves, 2013], 205 characters
Character-Level Language Modelling

- Predicting XML tags with stacked LSTM and GF-LSTM
Character-Level Language Modelling

- Generated samples given various kinds of test seed snippets

Istanbul is located in north-western [[Turkey]] and south-eastern Europe within the [[Marmara Region]] on a total area of 600km² and wards by merging the airport and carry [[Discount of Cuba|Year of Empire|Temastique]], "quote;

*[[http://indianajones.wikicities.com The Indiana Jones Wiki]]
*[[http://www.theindyexperience.com The Indy Experience]]
*[[http://www.indygear.org/ Eugenics]],
which presumably includes an inside Liberals or Civilian leader JRD C President. Two large faculty alien colonies led by Thomas

[[Methodism|Methodist]] &ndash; 10%
[[Lutheranism|Lutheran]] &ndash; 6%
[[Church of Christ]] &ndash; 6%
[[Reformed Egyptian|Egyptian]] &ndash; 11%
[[Syriac]] – Member of Augusta (cultural)

In Europe, Paris was the center stage for the [[French Revolution]], and it became an important centre of finance, commerce, and funding important.
The markets for the Union also include the invention of money lower risks among a possible sacrifice and electrotex and their chemical

Google was founded by [[Larry Page]] and [[Sergey Brin]] while they were [[Doctor of Philosophy|Ph.D.]] students at [[Stanford University]]. Together they own about 14,000 files

fimber[266] [[January 15|15]] [[January 12|12]] [[January 1]].
Leading the democratisation of the Czech Republic in 1948,
Python Program Evaluation

• An interesting task to show if an RNN can understand programs

 • The goal is to predict the correct return value of a given Python script

 • Addition, multiplication, substraction, for-loop, variable assignment, logical comparison and if-else statement

 • Can artificially control the difficulty of each example

 • A training example looks like

```
Input:
j=8584
for x in range(8):
    j+=920
b=(1500+j)
print((b+7567))
```

```
Target: 25011.
```

Image credit: Learning to Execute [Zaremba and Sutskever, 2014]
Python Program Evaluation

- Python program evaluation results

GRU

Stacked RNNs

Gated Feedback RNNs

△ Gated Feedback—Stacked
Conclusion

• Gated-feedback architecture is helpful
 - Gated-feedback RNNs converge into better optimal point (even faster)
 - Gated-feedback RNNs take advantage when the tasks become harder
 - In all of our experiments, GF-LSTM scored the best results

• However, gated-feedback architecture performs worse when it is combined with \tanh
Thank you