Graph Characterization via Backtrackless paths

author: Richard Wilson, Department of Computer Science, University of York
published: Oct. 17, 2011,   recorded: September 2011,   views: 3097


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Random walks on graphs have been extensively used for graph characterization. Positive kernels between labeled graphs have been proposed recently. In this paper we use backtrackless paths for gauging the similarity between graphs. We introduce efficient algorithms for characterizing both labeled and unlabeled graphs. First we show how to define efficient kernels based on backtrackless paths for labeled graphs. Second we show how the pattern vectors composed of backtrackless paths of different lengths can be use to characterize unlabeled graphs. The proposed methods are then applied to both labeled and unlabeled graphs.

See Also:

Download slides icon Download slides: simbad2011_wilson_backtrackless_01.pdf (396.2┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: