Bag Dissimilarities for Multiple Instance Learning

author: David M. J. Tax, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology (TU Delft)
published: Oct. 17, 2011,   recorded: September 2011,   views: 3314
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

When objects cannot be represented well by single feature vectors, a collection of feature vectors can be used. This is what is done in Multiple Instance learning, where it is called a bag of instances. By using a bag of instances, an object gains more internal structure than when a single feature vector is used. This improves the expressiveness of the representation, but also adds complexity to the classification of the object. This paper shows that for the situation that not a single instance determines the class label of a bag, simple bag dissimilarity measures can significantly outperform standard multiple instance classifiers. In particular a measure that computes just the average minimum distance between instances, or a measure that uses the Earth Mover’s distance, perform very well.

See Also:

Download slides icon Download slides: simbad2011_tax_dissimilarities_01.pdf (2.5 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: