Combining Data Sources Nonlinearly for Cell Nucleus Classification of Renal Cell Carcinoma

author: Mehmet Gönen, Department of Information and Computer Science, Aalto University
published: Oct. 17, 2011,   recorded: September 2011,   views: 2874
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

In kernel-based machine learning algorithms, we can learn a combination of different kernel functions in order to obtain a similarity measure that better matches the underlying problem instead of using a single fixed kernel function. This approach is called multiple kernel learning (MKL). In this paper, we formulate a nonlinear MKL variant and apply it for nuclei classification in tissue microarray images of renal cell carcinoma (RCC). The proposed variant is tested on several feature representations extracted from the automatically segmented nuclei. We compare our results with single-kernel support vector machines trained on each feature representation separately and three linear MKL algorithms from the literature. We demonstrate that our variant obtains more accurate classifiers than competing algorithms for RCC detection by combining information from different feature representations nonlinearly.

See Also:

Download slides icon Download slides: simbad2011_gonen_carcinoma_01.pdf (314.2 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: