Multi-task Regularization of Generative Similarity Models

author: Luca Cazzanti, Department of Electrical Engineering, University of Washington
published: Oct. 17, 2011,   recorded: September 2011,   views: 2991
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We investigate a multi-task approach to similarity discriminant analysis, where we propose treating the estimation of the different class-conditional distributions of the pairwise similarities as multiple tasks. We show that regularizing these estimates together using a least-squares regularization weighted by a task-relatedness matrix can reduce the resulting maximum a posteriori classification errors. Results are given for benchmark data sets spanning a range of applications. In addition, we present a new application of similarity-based learning to analyzing the rhetoric of multiple insurgent groups in Iraq. We show how to produce the necessary task relatedness information from standard given training data, as well as how to derive task-relatedness information if given side information about the class relatedness.

See Also:

Download slides icon Download slides: simbad2011_cazzanti_generative_01.pdf (2.6┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: