Deep Language Classification for Relabeling of Financial News and its application in Stock Price Forecasting

author: Miha Torkar, Artificial Intelligence Laboratory, Jožef Stefan Institute
published: Nov. 14, 2019,   recorded: October 2019,   views: 4
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

This paper aims at assessing the performance of the transfer learning task consisting of training set of classiffiers on high frequency financial news data for 74 publicly traded companies, with domain speciffic labels. This source of data is provided by the Jozef Stefan Institute and is used exclusively for the purposes of this research. The trained classiffiers are then used to attribute labels to an unlabelled source of high frequency aggregated news, Event-Registry. The aim is for the relabelled data to be used in the generation of exogenous features for use in time series forecasting of the companies' prices. It is found that using a fine-tuned BERT [1] model yields the most semantically coherent labels, and the features generated from the newly labelled data prove to yield the highest accuracy forecasts on held out price data.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: