FSADA, an anomaly detection approach

author: Viktor Jovanoski, Department of Intelligent Systems, Jožef Stefan Institute
published: Oct. 23, 2018,   recorded: October 2018,   views: 670


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


inter-connected, spanning over a range of computing devices. As software systems are being split into modules and services, coupled with an increasing parallelization, detecting and managing anomalies in such environments is hard. In practice, certain localized areas and subsystems provide strong monitoring support, but cross-system error-correlation, root-cause analysis and prediction are an elusive target. We propose a general approach to what we call Full-spectrum anomaly detection - an architecture that is able to detect local anomalies on data from various sources as well as creating high-level alerts utilizing background knowledge, historical data and forecast models. The methodology can be implemented either completely or partially.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: