Personalized Query Auto-Completion for News Search

author: Lorand Dali, Artificial Intelligence Laboratory, Jožef Stefan Institute
published: Oct. 30, 2013,   recorded: October 2013,   views: 1990
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

In this paper we study the problem of guessing what search query the user intends to type into a search engine based on the first few characters of the query, also known as prefix based query auto-completion. We train and evaluate two personalized auto-completion models on search logs from an online news portal. The personalization comes from using demographic and location information specific to the user. Our experiments show that we can guess the query the user intended to type and rank it among the top three suggestions over 75 % of the time. Moreover, the methods described can decrease the number of keystrokes by about 40%, thus saving the user a lot of typing.

See Also:

Download slides icon Download slides: sikdd2013_dali_news_search_01.pdf (805.1 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: