Semantic Graphs Derived from Triplets with Application in Document Summarization

author: Delia Rusu, Artificial Intelligence Laboratory, Jožef Stefan Institute
published: Nov. 7, 2008,   recorded: October 2008,   views: 4720


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Information nowadays has become more and more accessible, so much as to give birth to an information overload issue. Yet important decisions have to be made, depending on the available information. As it is impossible to read all the relevant content that helps one stay informed, a possible solution would be condensing data and obtaining the kernel of a text by automatically summarizing it.

We present an approach to analyzing text and retrieving valuable information in the form of a semantic graph based on subject-verb-object triplets extracted from sentences. Once triplets have been generated, we apply several techniques in order to obtain the semantic graph of the document: coreference and anaphora resolution of named entities and semantic normalization of triplets. Finally, we describe the automatic document summarization process starting from the semantic representation of the text.

The experimental evaluation carried out step by step on several Reuters newswire articles shows a comparable performance of the proposed approach with other existing methodologies. For the assessment of the document summaries we utilize an automatic summarization evaluation package, so as to show a ranking of various summarizers.

See Also:

Download slides icon Download slides: sikdd08_rusu_sgdt_01.pdf (968.4 KB)

Download slides icon Download slides: sikdd08_rusu_sgdt_01.pptx (770.0 KB)

Download article icon Download article: sikdd08_rusu_sgdt_article.pdf (195.3 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: