Living on the edge: Phase transitions in convex programs with random data

author: Joel Tropp, Department of Computing and Mathematical Sciences, California Institute of Technology (Caltech)
published: Oct. 29, 2014,   recorded: September 2014,   views: 80
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Recent research indicates that many convex optimization problems with random constraints exhibit a phase transition as the number of constraints increases. For example, this phenomenon emerges in the `1 minimization method for identifying a sparse vector from random linear measurements. Indeed, the `1 approach succeeds with high probability when the number of measurements exceeds a threshold that depends on the sparsity level; otherwise, it fails with high probability. This paper provides the first rigorous analysis that explains why phase transitions are ubiquitous in random convex optimization problems. It also describes tools for making reliable predictions about the quantitative aspects of the transition, including the location and the width of the transition region. These techniques apply to regularized linear inverse problems with random measurements, to demixing problems under a random incoherence model, and also to cone programs with random affine constraints. The applied results depend on foundational research in conic geometry. This paper introduces a summary parameter, called the statistical dimension, that canonically extends the dimension of a linear subspace to the class of convex cones. The main technical result demonstrates that the sequence of intrinsic volumes of a convex cone concentrates sharply around the statistical dimension. This fact leads to accurate bounds on the probability that a randomly rotated cone shares a ray with a fixed cone.

See Also:

Download slides icon Download slides: sahd2014_tropp_phase_transitions_01.pdf (959.6┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: