Conjugate gradient iterative hard thresholding for compressed sensing and matrix completion

author: Jared Tanner, Mathematical Institute, University of Oxford
published: Oct. 29, 2014,   recorded: September 2014,   views: 59
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Compressed sensing and matrix completion are techniques by which simplicity in data can be exploited for more efficient data acquisition. For instance, if a matrix is known to be (approximately) low rank then it can be recovered from few of its entries. The design and analysis of computationally efficient algorithms for these problems has been extensively studies over the last 8 years. In this talk we present a new algorithm that balances low per iteration complexity with fast asymptotic convergence. This algorithm has been shown to have faster recovery time than any other known algorithm in the area, both for small scale problems and massively parallel GPU implementations. The new algorithm adapts the classical nonlinear conjugate gradient algorithm and shows the efficacy of a linear algebra perspective to compressed sensing and matrix completion.

See Also:

Download slides icon Download slides: sahd2014_tanner_compressed_sensing_01.pdf (1.1┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: