Planning in Information Space with Macro-actions

author: Nicholas Roy, Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, MIT
published: Nov. 8, 2010,   recorded: June 2010,   views: 2854

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Active learning can be framed as a planning in information space problem: the goal is to learn about the world by taking actions that improve expected performance. In some domains, planning far into the future is prohibitively expensive and the agent is not able to discover effective information-gathering plans. However, by using macro-actions consisting of fixed-length open-loop policies, the policy class considered during planning is explicitly restricted in return for computational gains that allow much deeper-horizon forward search. In a certain subset of domains, it is possible to analytically compute the distribution over posterior beliefs that results from a single macro-action; this distribution captures any observation sequence that could occur during the macro-action, and allows significant additional computational savings. I will show performance on two simulation experiments: a standard exploration domain and a UAV search domain.

See Also:

Download slides icon Download slides: rss2010_roy_pis_01.pdf (39.7 MB)

Download Video - generic video source Download rss2010_roy_pis_01.mp4 (Video - generic video source 216.6 MB)

Download Video Download rss2010_roy_pis_01.flv (Video 104.1 MB)

Download Video Download rss2010_roy_pis_01.wmv (Video 101.3 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: