Developmental constraints on active learning for the acquisition of motor skills in high-dimensional robots

author: Pierre-Yves Oudeyer, INRIA Bordeaux - Sud-Ouest
published: Nov. 8, 2010,   recorded: June 2010,   views: 237
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Learning motor control in robots, such as learning visual reaching or object manipulation in humanoid robots, is becoming a central topic both in "traditional" robotics and in developmental robotics. A major obstacle is that learning can become extremely slow or even impossible without adequate exploration strategies. Active learning techniques, also called intrinsically motivated learning in the developmental robotics literature, can be used to accelerate learning. Yet, many robotic spaces have properties which are not compatible with the standard assumptions of most active learning or intrinsic motivation algorithms. For example, they are typically much too large to be learnt entirely, they can even be open-ended, and they can also contain subspaces which are too complex to be learnt by given machine learning algorithms. Some approaches to active learning/intrinsic motivation have been proposed to address some of these difficulties, such as the explicit maximization of information gain or the explicit maximization of the decrease of prediction errors (as opposed to the maximization of uncertainty or prediction errors as in many active learning heuristics). Yet, even these approaches become quickly inefficient in realistic sensorimotor spaces. In this talk, I will argue that various kinds of developmental constraints should be considered to address properly those spaces, such as maturational constraints on sensorimotor channels, the use of motor primitives, constraints on the spaces on which active learning is performed, morphological constraints, and obviously social learning constraints.

See Also:

Download slides icon Download slides: rss2010_oudeyer_dca_01.pdf (7.6 MB)

Download Video - generic video source Download rss2010_oudeyer_dca_01.mp4 (Video - generic video source 187.3 MB)

Download Video Download rss2010_oudeyer_dca_01.flv (Video 85.9 MB)

Download Video Download rss2010_oudeyer_dca_01.wmv (Video 92.2 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: