Dynamic ℓ1 Reconstruction

author: Justin Romberg, School of Electrical and Computer Engineering, Georgia Institute of Technology
published: Aug. 26, 2013,   recorded: July 2013,   views: 4467
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Sparse signal recovery often involves solving an ℓ1-regularized optimization problem. Most of the existing algorithms focus on the static settings, where the goal is to recover a fixed signal from a fixed system of equations. This talk will have two parts. In the fi rst, we present a collection of homotopy-based algorithms that dynamically update the solution of the underlying ℓ1 problem as the system changes. The sparse Kalman fi lter solves an ℓ1-regularized Kalman fi lter equation for a time-varying signal that follows a linear dynamical system. Our proposed algorithm sequentially updates the solution as the new measurements are added and the old measurements are removed from the system.

In the second part of the talk, we will discuss a continuous time "algorithm" (i.e. a set of coupled nonlinear di fferential equations) for solving a class of sparsity regularized least-square problems. We characterize the convergence properties of this neural-net type system, with a special emphasis on the case when the fi nal solution is indeed sparse.

This is joint work with M. Salman Asif, Aurele Balavoine, and Chris Rozell

See Also:

Download slides icon Download slides: roks2013_romberg_reconstruction_01.pdf (5.1 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: