Output Kernel Learning Methods

author: Francesco Dinuzzo, Max Planck Institute for Intelligent Systems, Max Planck Institute
published: Aug. 26, 2013,   recorded: July 2013,   views: 4412


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


A rather flexible approach to multi-task learning consists in solving a regularization problem where a suitable kernel is used to model joint relationships between both inputs and tasks. Since specifying an appropriate multi-task kernel in advance is not always possible, estimating one from the data is often desirable. Herein, we overview a class of techniques for learning a multi-task kernel that can be decomposed as the product of a kernel on the inputs and one on the task indices. The kernel on the task indices (output kernel) is optimized simultaneously with the predictive function by solving a joint two-level regularization problem.

See Also:

Download slides icon Download slides: roks2013_dinuzzo_output_01.pdf (656.1┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: