Feature Selection via Detecting Ineffective Features

author: Kris De Brabanter, Optimization in Engineering Center (OPTEC), KU Leuven
published: Aug. 26, 2013,   recorded: July 2013,   views: 3741


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Consider the regression problem with a response variable Y and with a feature vector X. For the regression function m(x) = E{Y | X = x}, we introduce a new and simple estimator of the minimum mean squared error L ∗ = E{(Y −m(X))2}. Let X(−k) be the feature vector, in which the k-th component of X is missing. In this paper we analyze a nonparametric test for the hypothesis that the k-th component is ineffective, i.e., E{Y | X} = E{Y | X(−k)} a.s.

See Also:

Download slides icon Download slides: roks2013_brabanter_feature_01.pdf (766.5 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: