TankThin-film structures and plasma surface engineering

author: Miran Mozetič, Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute
produced by: S.TV.A.d.o.o.
published: Aug. 14, 2013,   recorded: June 2013,   views: 91
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Advanced thin-film structures, composite materials and plasma treated surfaces are based on progress in thin-films and surface science. Reactive oxygen plasmas will be studied by optical spectrometry and catalytic probes in order to understand interaction of plasma radicals with solid surfaces of polymers and composities. Oxygen plasmas wil be applied to advanced technological processing including selective plasma etching, discharge cleaning, cold ashing, and plasma sterilization. The physical and tribological properties of new generation of surface coatings (nanocomposite, multilayer / superlattice, carbon and metal containing carbon coatings)for wear protection and friction reduction will be studied. The application of such coatings for protection of tools for dry, hard and hot working machining as well as for machining of composites will be tested. The plasma processes during deposition of hard coatings will be studied by mass and energy-resolved spectroscopy. Plasma surface engineering will be applied to replace to conventional electrochemical deposition techniques which are ecological unacceptable. Plasma vapour deposition processes will be used also for deposition of quasicrystal thin films and electrolyte thin films for solid oxide fuel cells. The accurate characterization of surfaces, interfaces and depth profiles will be achieved by high resolution AES depth profilng using two ion beams and/or sample rotation technique, low ion beam energy and grazing ion incidence angle. The composition, crystalline structure and surface topography of plasma treated surfaces and thi-film structures will be investigated by relevant methods such as AES, XPS, SPEM, SEM, TEM, XRD, EXAFS and AFM. The results of the program are in particular foreseen to find their use in the fields of surface and plasma science, coatings technology and surface engineering.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: