Estimating Parameters and Hidden Variables in a Non-linear State-space Model of Regulatory Networks

author: Minh Quach, Université Evry Val d'Essonne
published: April 4, 2007,   recorded: March 2007,   views: 7506


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Understanding and identifying biological complex systems at work in the cell requires to develop models able to capture the stochastic nature of biological processes as well as their dynamics. Focusing on gene regulatory networks, we propose a new quantitative model in the form of a dynamical Bayesian network that allows to represent both genes and proteins in the same framework. We start from the nonlinear differential equations of Michaelis-Menten which are the gold-standard to represent biochemical interactions and develop a discrete-time and probabilistic model from these equations. Compared to previous works such as Nachman et al [1], our model takes into account the dependency between the regulatory proteins and the genes that code for them as well as protein-protein interactions and protein degradations. In the resulting nonlinear dynamical system, the proteins concentrations are hidden while gene expressions are observed. In order to learn the model's parameters, we first construct a discrete-time probabilistic model corresponding to our continuous-time state-space model and then derive a Kalman smoother algorithm based on the unscented transformation [2] to recursively estimate the parameters and unobserved protein activities. The generality of the learning method opens the door to various adaptations of the model if required by the biology.

Numerical results on parameter and state estimation for the repressilator [3] and other several small networks are presented and show the relevance of the model.

See Also:

Download slides icon Download slides: pesb07_quach_epa_01.pdf (834.5¬†KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Reviews and comments:

Comment1 Oanh, October 3, 2008 at 11:30 a.m.:

You're so great Minh, I'd like your presentation very much !!!

Write your own review or comment:

make sure you have javascript enabled or clear this field: