Expectation Consistent Approximate Inference

author: Ole Winther, Technical University of Denmark
published: Feb. 25, 2007,   recorded: January 2005,   views: 119
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We propose a novel framework for approximations to intractable probabilistic models. The method is based on a free energy formulation of inference and allows for a simultaneous computation of marginal expectations and the log partition function for continuous and discrete random variables. Using an exact perturbative representation of the free energy around a tractable model, the approximation uses two tractable probability distributions which are consistent on a set of moments and encode different features of the original intractable distribution. In such a way we are able to include nontrivial correlations which are neglected in a (factorized) variational Bayes approach. We test the framework on toy benchmark problems for binary variables on fully connected graphs and 2D grids and compare with other methods, such as loopy belief propagation. Good performance is already achieved by using single nodes as tractable substructures. Significant improvements are obtained when a spanning tree is used instead.

See Also:

Download slides icon Download slides: oiml05_winther_ecai_01.pdf (216.2┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: