Efficient max-margin Markov learning via conditional gradient and probabilistic inference

author: Juho Rousu, Department of Computer Science, University of Helsinki
published: Feb. 25, 2007,   recorded: July 2006,   views: 4318
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We present a general and efficient optimisation methodology for for max-margin sructured classification tasks. The efficiency of the method relies on the interplay of several techiques: marginalization of the dual of the structured SVM, or max-margin Markov problem; partial decomposition via a gradient formulation; and finally tight coupling of a max-likelihood inference algorithm into the optimization algorithm, as opposed to using inference as a working set maintenance mechanism only.

See Also:

Download slides icon Download slides: oh06_rousu_emmml_01.pdf (205.0┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: