Future Information Minimization as PAC Bayes regularization in Reinforcement Learning

author: Naftali Tishby, School of Computer Science and Engineering, The Hebrew University of Jerusalem
published: Jan. 25, 2012,   recorded: December 2011,   views: 231
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Interactions between an organism and its environment are commonly treated in the framework of Markov Decision Processes (MDP). While standard MDP is aimed at maximizing expected future rewards (value), the circular flow of information between the agent and its environment is generally ignored. In particular, the information gained from the environment by means of perception and the information involved in the process of action selection are not treated in the standard MDP setting. In this talk, we focus on the control information and show how it can be combined with the reward measure in a unified way. Both of these measures satisfy the familiar Bellman recursive equations, and their linear combination (the free-energy) provides an interesting new optimization criterion. The tradeoff between value and information, explored using our INFO-RL algorithm, provides a principled justification for stochastic (soft) policies. These optimal policies are also shown to be robust to uncertainties in the reward values by applying the PAC-Bayes generalization bound. The same PAC-Bayesian bounding term thus plays the dual roles of information-gain in the Information-RL formalism and as a model-order regularization term in the learning of the process.

See Also:

Download slides icon Download slides: nipsworkshops2011_tishby_refinement_01.pdf (4.0┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: